# Avoid random failures to converge set.seed(1) # See Becker-Clogg (1989) test library(logmult) data(color) rcm <- rc(color[,,1], 2, weighting="marginal", start=NA) rcu <- rc(color[,,1], 2, weighting="uniform", start=NA) rcn <- rc(color[,,1], 2, weighting="none", start=NA) stopifnot(all.equal(fitted(rcm), fitted(rcu))) stopifnot(all.equal(fitted(rcm), fitted(rcn))) phim <- iac(fitted(rcm), weighting="marginal") phiu <- iac(fitted(rcu), weighting="uniform") phin <- iac(fitted(rcn), weighting="none") cphim <- iac(fitted(rcm), TRUE, weighting="marginal") cphiu <- iac(fitted(rcm), TRUE, weighting="uniform") cphin <- iac(fitted(rcm), TRUE, weighting="none") stopifnot(all.equal(phim, sqrt(sum(rcm$assoc$phi^2)))) stopifnot(all.equal(phiu, sqrt(sum(rcu$assoc$phi^2)))) stopifnot(all.equal(phin, sqrt(sum(rcn$assoc$phi^2)))) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) # Test on perfectly symmetric association data(ocg1973) rcm <- rc(ocg1973, 2, symmetric=TRUE, weighting="marginal", start=NA) rcu <- rc(ocg1973, 2, symmetric=TRUE, weighting="uniform", start=NA) rcn <- rc(ocg1973, 2, symmetric=TRUE, weighting="none", start=NA) stopifnot(all.equal(fitted(rcm), fitted(rcu))) stopifnot(all.equal(fitted(rcm), fitted(rcn))) w <- (rcm$assoc$row.weights + rcm$assoc$col.weights)[,1]/2 phim <- iac(fitted(rcm), weighting="marginal", row.weights=w, col.weights=w) phiu <- iac(fitted(rcu), weighting="uniform") phin <- iac(fitted(rcn), weighting="none") sphim <- iac(fitted(rcm), component="symmetric", weighting="marginal", row.weights=w, col.weights=w) sphiu <- iac(fitted(rcu), component="symmetric", weighting="uniform") sphin <- iac(fitted(rcn), component="symmetric", weighting="none") aphim <- iac(fitted(rcm), component="antisymmetric", weighting="marginal", row.weights=w, col.weights=w) aphiu <- iac(fitted(rcu), component="antisymmetric", weighting="uniform") aphin <- iac(fitted(rcn), component="antisymmetric", weighting="none") cphim <- iac(fitted(rcm), TRUE, weighting="marginal", row.weights=w, col.weights=w) cphiu <- iac(fitted(rcu), TRUE, weighting="uniform") cphin <- iac(fitted(rcn), TRUE, weighting="none") stopifnot(all.equal(phim, sphim)) stopifnot(all.equal(phiu, sphiu)) stopifnot(all.equal(phin, sphin)) stopifnot(all.equal(phim, sqrt(sum(rcm$assoc$phi^2)))) stopifnot(all.equal(phiu, sqrt(sum(rcu$assoc$phi^2)))) stopifnot(all.equal(phin, sqrt(sum(rcn$assoc$phi^2)))) stopifnot(all(c(aphim, aphiu, aphin) < 1e-10)) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) # Test on perfectly anti-symmetric association hmm <- hmskew(ocg1973, nd.symm=0, weighting="marginal", start=NA) hmu <- hmskew(ocg1973, nd.symm=0, weighting="uniform", start=NA) hmn <- hmskew(ocg1973, nd.symm=0, weighting="none", start=NA) stopifnot(all.equal(fitted(hmm), fitted(hmu))) stopifnot(all.equal(fitted(hmm), fitted(hmn))) w <- (hmm$assoc$row.weights + hmm$assoc$col.weights)[,1]/2 phim <- iac(fitted(hmm), weighting="marginal", row.weights=w, col.weights=w) phiu <- iac(fitted(hmu), weighting="uniform") phin <- iac(fitted(hmn), weighting="none") sphim <- iac(fitted(hmm), component="symmetric", weighting="marginal", row.weights=w, col.weights=w) sphiu <- iac(fitted(hmu), component="symmetric", weighting="uniform") sphin <- iac(fitted(hmn), component="symmetric", weighting="none") aphim <- iac(fitted(hmm), component="antisymmetric", weighting="marginal", row.weights=w, col.weights=w) aphiu <- iac(fitted(hmu), component="antisymmetric", weighting="uniform") aphin <- iac(fitted(hmn), component="antisymmetric", weighting="none") cphim <- iac(fitted(hmm), TRUE, weighting="marginal", row.weights=w, col.weights=w) cphiu <- iac(fitted(hmu), TRUE, weighting="uniform") cphin <- iac(fitted(hmn), TRUE, weighting="none") stopifnot(all.equal(phim, aphim)) stopifnot(all.equal(phiu, aphiu)) stopifnot(all.equal(phin, aphin)) stopifnot(all.equal(phim, sqrt(sum(hmm$assoc$phi^2)))) stopifnot(all.equal(phiu, sqrt(sum(hmu$assoc$phi^2)))) stopifnot(all.equal(phin, sqrt(sum(hmn$assoc$phi^2)))) stopifnot(all(c(sphim, sphiu, sphin) < 1e-10)) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) # Test on symmetric and anti-symmetric association # Without starting values, model too often converges to wrong solution start <- c(6.540, 0.106, 0.407, 0.666, 1.006, -0.581, -0.261, 0.060, -4.411, -0.567, -0.310, 0.264, 0.652, -1.794, -1.610, -1.627, -0.743, -0.012, 6.311, 0.295, 0.198, -0.015, -0.167, 0.010) hmm <- hmskew(ocg1973, nd.symm=1, weighting="marginal", start=start) hmu <- hmskew(ocg1973, nd.symm=1, weighting="uniform", start=start) hmn <- hmskew(ocg1973, nd.symm=1, weighting="none", start=start) stopifnot(all.equal(fitted(hmm), fitted(hmu))) stopifnot(all.equal(fitted(hmm), fitted(hmn))) w <- (hmm$assoc$row.weights + hmm$assoc$col.weights)[,1]/2 phim <- iac(fitted(hmm), weighting="marginal", row.weights=w, col.weights=w) phiu <- iac(fitted(hmu), weighting="uniform") phin <- iac(fitted(hmn), weighting="none") sphim <- iac(fitted(hmm), component="symmetric", weighting="marginal", row.weights=w, col.weights=w) sphiu <- iac(fitted(hmu), component="symmetric", weighting="uniform") sphin <- iac(fitted(hmn), component="symmetric", weighting="none") aphim <- iac(fitted(hmm), component="antisymmetric", weighting="marginal", row.weights=w, col.weights=w) aphiu <- iac(fitted(hmu), component="antisymmetric", weighting="uniform") aphin <- iac(fitted(hmn), component="antisymmetric", weighting="none") cphim <- iac(fitted(hmm), TRUE, weighting="marginal", row.weights=w, col.weights=w) cphiu <- iac(fitted(hmu), TRUE, weighting="uniform") cphin <- iac(fitted(hmn), TRUE, weighting="none") stopifnot(all.equal(phim, sqrt(sphim^2 + aphim^2))) stopifnot(all.equal(phiu, sqrt(sphiu^2 + aphiu^2))) stopifnot(all.equal(phin, sqrt(sphin^2 + aphin^2))) stopifnot(all.equal(sphim, sqrt(sum(hmm$assoc$phi^2)))) stopifnot(all.equal(sphiu, sqrt(sum(hmu$assoc$phi^2)))) stopifnot(all.equal(sphin, sqrt(sum(hmn$assoc$phi^2)))) stopifnot(all.equal(aphim, sqrt(sum(hmm$assoc.hmskew$phi^2)))) stopifnot(all.equal(aphiu, sqrt(sum(hmu$assoc.hmskew$phi^2)))) stopifnot(all.equal(aphin, sqrt(sum(hmn$assoc.hmskew$phi^2)))) stopifnot(all.equal(phim, sqrt(sum(cphim)))) stopifnot(all.equal(phiu, sqrt(sum(cphiu)))) stopifnot(all.equal(phin, sqrt(sum(cphin)))) # Test for phi computed from UNIDIFF two-way interaction coefficients data(yaish) tab <- aperm(yaish[,,-7], 3:1) u2m <- unidiff(tab, weighting="marginal") stopifnot(all.equal(u2m$unidiff$phi, iac(fitted(u2m), weighting="marginal"))) stopifnot(all.equal(u2m$unidiff$phi[1] * exp(u2m$unidiff$layer$qvframe$estimate), iac(fitted(u2m), weighting="marginal"), check.attributes=FALSE)) u2u <- unidiff(tab, weighting="uniform") stopifnot(all.equal(u2u$unidiff$phi, iac(fitted(u2u), weighting="uniform"))) stopifnot(all.equal(u2u$unidiff$phi[1] * exp(u2u$unidiff$layer$qvframe$estimate), iac(fitted(u2u), weighting="uniform"), check.attributes=FALSE)) u2n <- unidiff(tab, weighting="none", norm=2) stopifnot(all.equal(u2n$unidiff$phi, iac(fitted(u2n), weighting="none"))) stopifnot(all.equal(u2n$unidiff$phi[1] * exp(u2n$unidiff$layer$qvframe$estimate), iac(fitted(u2n), weighting="none"), check.attributes=FALSE)) stopifnot(all.equal(iac(yaish + 0.5), apply(yaish + 0.5, 3, iac, row.weights=margin.table(yaish + 0.5, 1), col.weights=margin.table(yaish + 0.5, 2)))) # Test with all layers having proportional frequencies, # where standard and shrunk estimators must give the same result data(yaish) tab <- yaish[,,c(1, 1, 1)] + 0.5 tab[,,2] <- tab[,,2] * 3 tab[,,3] <- tab[,,3] * 8 phim <- iac(tab, weighting="marginal") phims <- iac(tab, weighting="marginal", shrink=TRUE) stopifnot(all.equal(phim, phims)) phiu <- iac(tab, weighting="uniform") phius <- iac(tab, weighting="uniform", shrink=TRUE) stopifnot(all.equal(phiu, phius)) phin <- iac(tab, weighting="none") phins <- iac(tab, weighting="none", shrink=TRUE) stopifnot(all.equal(phin, phins)) ### ## Comparison with mean/sum of all spanning odds ratios ### # Can be set to arbitrary values nr <- 4 nc <- 5 or <- function(tab) { or1 <- function(i, j, i2, j2) (tab[i, j] * tab[i2, j2]) / (tab[i, j2] * tab[i2, j]) or <- array(NA, c(nrow(tab), ncol(tab), nrow(tab), ncol(tab))) for(i in 1:nrow(tab)) for(j in 1:ncol(tab)) for(i2 in 1:nrow(tab)) for(j2 in 1:ncol(tab)) or[i, j, i2, j2] <- or1(i, j, i2, j2) or } wlor2 <- function(tab) { rp <- prop.table(margin.table(tab, 1)) * nrow(tab) cp <- prop.table(margin.table(tab, 2)) * ncol(tab) wlor2 <- w <- array(NA, c(nrow(tab), ncol(tab), nrow(tab), ncol(tab))) for(i in 1:nrow(tab)) for(j in 1:ncol(tab)) for(i2 in 1:nrow(tab)) for(j2 in 1:ncol(tab)){ wlor2[i, j, i2, j2] <- log((tab[i, j] * tab[i2, j2]) / (tab[i, j2] * tab[i2, j]))^2 w[i, j, i2, j2] <- rp[i] * cp[j] * rp[i2] * cp[j2] } wlor2 * w / sum(w) } ## Uniform weighting # General case res <- replicate(10, { tab <- matrix(rpois(nr*nc, 1000), nr, nc) + .5 rp <- rep(1/nr, nr) cp <- rep(1/nc, nc) c(iac(tab, weighting="uniform"), iac(tab, row.weights=rp, col.weights=cp), sqrt(sum(log(or(tab))^2)/((nr*nc)^2))/2) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) # 2x2 table (relation with single odds ratio) res <- replicate(10, { tab <- matrix(rpois(2*2, 1000), 2, 2) + .5 rp <- cp <- rep(1/2, 2) c(iac(tab, weighting="uniform"), iac(tab, row.weights=rp, col.weights=cp), abs(log(tab[1,1] * tab[2,2] / (tab[1,2] * tab[2,1])))/4) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) ## No weighting # General case res <- replicate(10, { tab <- matrix(rpois(nr*nc, 1000), nr, nc) + .5 rp <- rep(1, nr) cp <- rep(1, nc) c(iac(tab, weighting="none"), sqrt(sum(log(or(tab))^2)/(nr*nc))/2) }) stopifnot(all.equal(res[1,], res[2,])) # 2x2 table (relation with single log-odds ratio) res <- replicate(10, { tab <- matrix(rpois(2*2, 1000), 2, 2) + .5 rp <- cp <- rep(1, 2) c(iac(tab, weighting="none"), abs(log(tab[1,1] * tab[2,2] / (tab[1,2] * tab[2,1])))/2) }) stopifnot(all.equal(res[1,], res[2,])) ## Marginal weighting # General case res <- replicate(10, { tab <- matrix(rpois(nr*nc, 100), nr, nc) +.5 rp <- prop.table(margin.table(tab, 1)) cp <- prop.table(margin.table(tab, 2)) c(iac(tab, weighting="marginal"), iac(tab, row.weights=rp, col.weights=cp), sqrt(sum(wlor2(tab)))/2) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) # 2x2 table (equality with single odds ratio) res <- replicate(10, { tab <- matrix(rpois(2*2, 100), 2, 2) + .5 rp <- prop.table(margin.table(tab, 1)) cp <- prop.table(margin.table(tab, 2)) c(iac(tab, weighting="marginal"), iac(tab, row.weights=rp, col.weights=cp), sqrt(log(tab[1,1] * tab[2,2] / (tab[1,2] * tab[2,1]))^2 * rp[1] * cp[1] * rp[2] * cp[2])) }) stopifnot(all.equal(res[1,], res[2,])) stopifnot(all.equal(res[1,], res[3,])) ## Normalized IAC data(color) stopifnot(abs(iac(color[,,1], normalize=TRUE) - 0.4203209) < 1e-7) stopifnot(abs(iac(color[,,2], normalize=TRUE) - 0.3646107) < 1e-7) stopifnot(abs(iac(color[,,1], normalize=TRUE, weighting="uniform") - 0.5105931) < 1e-7) stopifnot(abs(iac(color[,,2], normalize=TRUE, weighting="uniform") - 0.5275346) < 1e-7) stopifnot(abs(iac(color[,,1], normalize=TRUE, weighting="none") - 0.8511365) < 1e-7) stopifnot(abs(iac(color[,,2], normalize=TRUE, weighting="none") - 0.8586745) < 1e-7) stopifnot(all.equal(iac(color, normalize=TRUE), c(0.4032049, 0.3698703), check.names=FALSE, tolerance=1e-7)) stopifnot(all.equal(iac(color, normalize=TRUE, weighting="uniform"), c(0.5105931, 0.5275346), check.names=FALSE, tolerance=1e-7)) stopifnot(all.equal(iac(color, normalize=TRUE, weighting="none"), c(0.8511365, 0.8586745), check.names=FALSE, tolerance=1e-7)) stopifnot(all.equal(iac(color, normalize=TRUE, shrink=TRUE), c(0.4114786, 0.3717251), check.names=FALSE, tolerance=1e-7)) stopifnot(all.equal(iac(color, normalize=TRUE, shrink=TRUE, weighting="uniform"), c(0.5188945, 0.5596786), check.names=FALSE, tolerance=1e-7)) stopifnot(all.equal(iac(color, normalize=TRUE, shrink=TRUE, weighting="none"), c(0.854869, 0.872177), check.names=FALSE, tolerance=1e-7)) stopifnot(iac(matrix(1, 2, 2), normalize=TRUE) == 0) stopifnot(iac(array(1, c(2, 2, 2)), normalize=TRUE) == c(0, 0)) stopifnot(iac(array(1, c(2, 2, 2)), normalize=TRUE, shrink=TRUE) == c(0, 0)) stopifnot(tryCatch(iac(color, cell=TRUE, normalize=TRUE), error=function(e) TRUE))