## Wong (2010), Table 2.7 (p. 48-49) # See also ?rc options(boot.ncpus=2) # For CRAN policies timings <- as.numeric(Sys.getenv("_R_CHECK_TIMINGS_")) notcran <- Sys.getenv("NOT_CRAN") if(notcran != "" || (!is.na(timings) && timings > 60)) { library(logmult) data(gss8590) # The table used in Wong (2010) is not perfectly consistent # with that of Wong (2001) tab <- margin.table(gss8590[,,c(2,4)], 1:2) tab[2,4] <- 49 model <- rc(tab, nd=2, weighting="none", se="jackknife", start=NA) model summary(model) # Jackknife standard errors are slightly different # from their asymptotic counterparts # Compare with bootstrap standard errors model2 <- rc(tab, nd=2, weighting="none", se="bootstrap", start=NA) plot(model, conf.int=0.95) summary(model2) # A few scores differ from reported results by .001 stopifnot(isTRUE(all.equal(round(c(model$assoc$phi), d=3), c(2.601, 1.522)))) stopifnot(isTRUE(all.equal(round(c(model$assoc$row), d=3), c(0.743, 0.088, -0.200, -0.632, 0.276, -0.061, -0.777, 0.562)))) stopifnot(isTRUE(all.equal(round(c(model$assoc$col), d=3), c(0.765, 0.020, -0.322, -0.55, 0.088, -0.137, -0.549, -0.120, -0.01, 0.816)))) }