Package: actuaRE Check: for code/documentation mismatches New result: WARNING Codoc mismatches from Rd file 'findbars.Rd': findbars Code: function(...) Docs: function(term) Argument names in code not in docs: ... Argument names in docs not in code: term Mismatches in argument names: Position: 1 Code: ... Docs: term Codoc mismatches from Rd file 'isNested.Rd': isNested Code: function(...) Docs: function(f1, f2) Argument names in code not in docs: ... Argument names in docs not in code: f1 f2 Mismatches in argument names: Position: 1 Code: ... Docs: f1 Codoc mismatches from Rd file 'nobars.Rd': nobars Code: function(...) Docs: function(term) Argument names in code not in docs: ... Argument names in docs not in code: term Mismatches in argument names: Position: 1 Code: ... Docs: term Package: ggeffects Check: tests New result: ERROR Running ‘testthat.R’ [97s/97s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(ggeffects) > test_check("ggeffects") You are calculating adjusted predictions on the population-level (i.e. `type = "fixed"`) for a *generalized* linear mixed model. This may produce biased estimates due to Jensen's inequality. Consider setting `bias_correction = TRUE` to correct for this bias. See also the documentation of the `bias_correction` argument. Not all rows are shown in the output. Use `print(..., n = Inf)` to show all rows. Not all rows are shown in the output. Use `print(..., n = Inf)` to show all rows. Running model... Done! Some of the focal terms are of type `character`. This may lead to unexpected results. It is recommended to convert these variables to factors before fitting the model. The following variables are of type character: `brand` Some of the focal terms are of type `character`. This may lead to unexpected results. It is recommended to convert these variables to factors before fitting the model. The following variables are of type character: `brand` Some of the focal terms are of type `character`. This may lead to unexpected results. It is recommended to convert these variables to factors before fitting the model. The following variables are of type character: `brand` Iteration 1 - deviance = 39.74973 - criterion = 0.8590917 Iteration 2 - deviance = 10.50328 - criterion = 2.758244 Iteration 3 - deviance = 9.231325 - criterion = 0.1363107 Iteration 4 - deviance = 9.227742 - criterion = 0.0003840654 Iteration 5 - deviance = 9.227742 - criterion = 3.446463e-09 converged NOTE: Results may be misleading due to involvement in interactions NOTE: Results may be misleading due to involvement in interactions Re-fitting to get Hessian Re-fitting to get Hessian Re-fitting to get Hessian Re-fitting to get Hessian Re-fitting to get Hessian Could not compute variance-covariance matrix of predictions. No confidence intervals are returned. Saving _problems/test-poly-zeroinf-27.R Can't compute adjusted predictions, `effects::Effect()` returned an error. Reason: Invalid operation on a survival time You may try `ggpredict()` or `ggemmeans()`. Can't compute adjusted predictions, `effects::Effect()` returned an error. Reason: non-conformable arguments You may try `ggpredict()` or `ggemmeans()`. [ FAIL 1 | WARN 1 | SKIP 70 | PASS 496 ] ══ Skipped tests (70) ══════════════════════════════════════════════════════════ • On CRAN (58): 'test-MCMCglmm.R:1:1', 'test-MixMod.R:1:1', 'test-averaging.R:1:1', 'test-avg_predictions.R:1:1', 'test-backtransform_response.R:1:1', 'test-bias_correction.R:1:1', 'test-brms-categ-cum.R:1:1', 'test-brms-monotonic.R:1:1', 'test-brms-ppd.R:1:1', 'test-brms-trial.R:1:1', 'test-clean_vars.R:1:1', 'test-clm.R:1:1', 'test-clm2.R:1:1', 'test-clmm.R:1:1', 'test-condition.R:1:1', 'test-correct_se_sorting.R:1:1', 'test-decimals.R:1:1', 'test-fixest.R:1:1', 'test-focal_only_random.R:1:1', 'test-format.R:1:1', 'test-gamlss.R:1:1', 'test-gamm4.R:1:1', 'test-glmer.R:2:1', 'test-glmmTMB.R:1:1', 'test-interval_re.R:1:1', 'test-ivreg.R:1:1', 'test-list_terms.R:32:1', 'test-lmer.R:1:1', 'test-mgcv.R:1:1', 'test-plot-from-vignettes.R:5:1', 'test-plot-ordinal-latent.R:1:1', 'test-plot-show_data.R:1:1', 'test-plot-survival.R:2:1', 'test-plot.R:1:1', 'test-polr.R:13:5', 'test-polr.R:43:5', 'test-pool_comparisons.R:1:1', 'test-print.R:1:1', 'test-print_digits.R:1:1', 'test-print_md.R:1:1', 'test-print_zero_inflation.R:1:1', 'test-resid_over_grid.R:33:5', 'test-rstanarm-ppd.R:1:1', 'test-rstanarm.R:1:1', 'test-sdmTMB.R:1:1', 'test-simulate.R:1:1', 'test-test_predictions-margin.R:1:1', 'test-test_predictions-mixed.R:1:1', 'test-test_predictions_emmeans.R:58:1', 'test-test_predictions_emmeans.R:73:1', 'test-test_predictions_ggeffects.R:115:1', 'test-test_predictions_ggeffects.R:164:1', 'test-test_predictions_ggeffects.R:183:3', 'test-test_predictions_ggeffects.R:226:5', 'test-vcov.R:1:1', 'test-vglm.R:1:1', 'test-zeroinfl.R:27:3', 'test-zi_prob.R:1:1' • On Linux (10): 'test-brglm.R:1:1', 'test-ci_backticks-names.R:1:1', 'test-emmeans-weights.R:1:1', 'test-gee.R:1:1', 'test-ggaverage.R:1:1', 'test-glm.R:1:1', 'test-ordinal.R:1:1', 'test-print_subsets.R:1:1', 'test-print_test_predictions-ordinal.R:1:1', 'test-print_test_predictions.R:1:1' • empty test (2): 'test-polr.R:136:5', 'test-polr.R:142:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-poly-zeroinf.R:27:3'): ggpredict, glmmTMB ────────────────────── Error in `exp(prdat.sim$cond)`: non-numeric argument to mathematical function Backtrace: ▆ 1. └─ggeffects::ggpredict(...) at test-poly-zeroinf.R:27:3 2. ├─base::do.call(ggpredict_helper, full_args) 3. └─ggeffects (local) ``(...) 4. ├─ggeffects::get_predictions(...) 5. └─ggeffects:::get_predictions.glmmTMB(...) [ FAIL 1 | WARN 1 | SKIP 70 | PASS 496 ] Error: ! Test failures. Execution halted Package: insight Check: examples New result: ERROR Running examples in ‘insight-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: is_converged > ### Title: Convergence test for mixed effects models > ### Aliases: is_converged > > ### ** Examples > > ## Don't show: > if (require("lme4", quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(lme4) + data(cbpp) + set.seed(1) + cbpp$x <- rnorm(nrow(cbpp)) + cbpp$x2 <- runif(nrow(cbpp)) + + model <- glmer( + cbind(incidence, size - incidence) ~ period + x + x2 + (1 + x | herd), + data = cbpp, + family = binomial() + ) + + is_converged(model) + ## Don't show: + }) # examplesIf > library(lme4) > data(cbpp) > set.seed(1) > cbpp$x <- rnorm(nrow(cbpp)) > cbpp$x2 <- runif(nrow(cbpp)) > model <- glmer(cbind(incidence, size - incidence) ~ period + x + x2 + + (1 + x | herd), data = cbpp, family = binomial()) boundary (singular) fit: see help('isSingular') > is_converged(model) Error in h(simpleError(msg, call)) : error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Calls: withAutoprint ... eval -> eval -> -> .handleSimpleError -> h Execution halted Package: insight Check: tests New result: ERROR Running ‘testthat.R’ [291s/142s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(insight) > test_check("insight") Starting 2 test processes. > test-find_transformation.R: boundary (singular) fit: see help('isSingular') > test-gamlss.R: GAMLSS-RS iteration 1: Global Deviance = 365.2328 > test-gamlss.R: GAMLSS-RS iteration 2: Global Deviance = 365.1292 > test-gamlss.R: GAMLSS-RS iteration 3: Global Deviance = 365.1269 > test-gamlss.R: GAMLSS-RS iteration 4: Global Deviance = 365.1268 > test-gamlss.R: GAMLSS-RS iteration 1: Global Deviance = 5779.746 > test-gamlss.R: GAMLSS-RS iteration 2: Global Deviance = 5779.746 > test-gamlss.R: GAMLSS-RS iteration 1: Global Deviance = 703.1164 > test-gamlss.R: GAMLSS-RS iteration 2: Global Deviance = 703.1164 > test-get_model.R: Loading required namespace: GPArotation > test-get_random.R: boundary (singular) fit: see help('isSingular') > test-glmmPQL.R: iteration 1 Saving _problems/test-is_converged-16.R > test-mmrm.R: mmrm() registered as emmeans extension > test-mmrm.R: mmrm() registered as car::Anova extension > test-model_info.R: boundary (singular) fit: see help('isSingular') > test-nestedLogit.R: list(work = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, > test-nestedLogit.R: 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, > test-nestedLogit.R: 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, > test-nestedLogit.R: 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, > test-nestedLogit.R: 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, > test-nestedLogit.R: 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, > test-nestedLogit.R: 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L > test-nestedLogit.R: ), full = c(1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, > test-nestedLogit.R: 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, > test-nestedLogit.R: 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L)) > test-polr.R: > test-polr.R: Re-fitting to get Hessian > test-polr.R: > test-polr.R: > test-polr.R: Re-fitting to get Hessian > test-polr.R: > test-survey_coxph.R: Stratified Independent Sampling design (with replacement) > test-survey_coxph.R: dpbc <- survey::svydesign( > test-survey_coxph.R: id = ~1, > test-survey_coxph.R: prob = ~randprob, > test-survey_coxph.R: strata = ~edema, > test-survey_coxph.R: data = subset(pbc, randomized) > test-survey_coxph.R: ) > test-survey_coxph.R: Stratified Independent Sampling design (with replacement) > test-survey_coxph.R: dpbc <- survey::svydesign( > test-survey_coxph.R: id = ~1, > test-survey_coxph.R: prob = ~randprob, > test-survey_coxph.R: strata = ~edema, > test-survey_coxph.R: data = subset(pbc, randomized) > test-survey_coxph.R: ) > test-survey_coxph.R: Stratified Independent Sampling design (with replacement) > test-survey_coxph.R: dpbc <- survey::svydesign( > test-survey_coxph.R: id = ~1, > test-survey_coxph.R: prob = ~randprob, > test-survey_coxph.R: strata = ~edema, > test-survey_coxph.R: data = subset(pbc, randomized) > test-survey_coxph.R: ) [ FAIL 1 | WARN 6 | SKIP 96 | PASS 3512 ] ══ Skipped tests (96) ══════════════════════════════════════════════════════════ • On CRAN (89): 'test-GLMMadaptive.R:2:1', 'test-averaging.R:1:1', 'test-bias_correction.R:1:1', 'test-blmer.R:262:3', 'test-betareg.R:197:5', 'test-brms.R:1:1', 'test-brms_aterms.R:1:1', 'test-brms_gr_random_effects.R:1:1', 'test-brms_mm.R:1:1', 'test-brms_missing.R:1:1', 'test-brms_von_mises.R:1:1', 'test-clean_names.R:109:3', 'test-clean_parameters.R:1:1', 'test-coxme.R:1:1', 'test-clmm.R:170:3', 'test-cpglmm.R:152:3', 'test-display.R:1:1', 'test-display.R:15:1', 'test-export_table.R:3:1', 'test-export_table.R:7:1', 'test-export_table.R:134:3', 'test-export_table.R:164:3', 'test-export_table.R:193:1', 'test-export_table.R:278:1', 'test-export_table.R:296:3', 'test-export_table.R:328:3', 'test-export_table.R:385:1', 'test-export_table.R:406:3', 'test-export_table.R:470:3', 'test-find_smooth.R:39:3', 'test-fixest.R:2:1', 'test-find_random.R:43:3', 'test-format_table.R:2:1', 'test-format_table_ci.R:72:1', 'test-gam.R:2:1', 'test-get_data.R:507:1', 'test-get_loglikelihood.R:143:3', 'test-get_loglikelihood.R:223:3', 'test-get_predicted.R:2:1', 'test-get_priors.R:1:1', 'test-get_varcov.R:43:3', 'test-get_varcov.R:57:3', 'test-get_datagrid.R:1068:3', 'test-get_datagrid.R:1105:5', 'test-is_converged.R:32:1', 'test-iv_robust.R:120:3', 'test-lavaan.R:1:1', 'test-lcmm.R:1:1', 'test-lme.R:28:3', 'test-lme.R:212:3', 'test-glmmTMB.R:67:3', 'test-glmmTMB.R:767:3', 'test-glmmTMB.R:803:3', 'test-glmmTMB.R:1142:3', 'test-marginaleffects.R:1:1', 'test-mgcv.R:1:1', 'test-mipo.R:1:1', 'test-mlogit.R:1:1', 'test-model_info.R:106:3', 'test-modelbased.R:1:1', 'test-mvrstanarm.R:1:1', 'test-null_model.R:85:3', 'test-panelr-asym.R:165:3', 'test-panelr.R:295:3', 'test-phylolm.R:1:1', 'test-print_parameters.R:1:1', 'test-r2_nakagawa_bernoulli.R:1:1', 'test-r2_nakagawa_beta.R:1:1', 'test-r2_nakagawa_binomial.R:1:1', 'test-r2_nakagawa_gamma.R:1:1', 'test-r2_nakagawa_linear.R:1:1', 'test-r2_nakagawa_negbin.R:1:1', 'test-r2_nakagawa_negbin_zi.R:1:1', 'test-r2_nakagawa_ordered_beta.R:1:1', 'test-r2_nakagawa_poisson.R:1:1', 'test-r2_nakagawa_poisson_zi.R:1:1', 'test-r2_nakagawa_truncated_poisson.R:1:1', 'test-r2_nakagawa_tweedie.R:1:1', 'test-rlmer.R:276:3', 'test-rms.R:1:1', 'test-rqss.R:1:1', 'test-rstanarm.R:1:1', 'test-sdmTMB.R:1:1', 'test-selection.R:2:1', 'test-spatial.R:2:1', 'test-svylme.R:1:1', 'test-tidymodels.R:1:1', 'test-vgam.R:2:1', 'test-weightit.R:1:1' • On Linux (3): 'test-BayesFactorBF.R:1:1', 'test-MCMCglmm.R:1:1', 'test-get_data.R:161:3' • Package `logistf` is loaded and breaks `mmrm::mmrm()` (1): 'test-mmrm.R:4:1' • works interactively (2): 'test-coxph-panel.R:34:3', 'test-coxph.R:38:3' • {bigglm} is not installed (1): 'test-model_info.R:24:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-is_converged.R:16:3'): is_converged ──────────────────────────── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─testthat::expect_true(is_converged(model)) at test-is_converged.R:16:3 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─insight::is_converged(model) 5. ├─insight:::is_converged.merMod(model) 6. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 10. │ └─Matrix::solve(Hessian, gradient) 11. └─base::.handleSimpleError(...) 12. └─base (local) h(simpleError(msg, call)) [ FAIL 1 | WARN 6 | SKIP 96 | PASS 3512 ] Error: ! Test failures. Execution halted Package: mice Check: tests New result: ERROR Running ‘testthat.R’ [34s/45s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(mice) Attaching package: 'mice' The following object is masked from 'package:stats': filter The following objects are masked from 'package:base': cbind, rbind > > test_check("mice") Saving _problems/test-mice.impute.2l.bin-32.R [ FAIL 1 | WARN 0 | SKIP 2 | PASS 379 ] ══ Skipped tests (2) ═══════════════════════════════════════════════════════════ • empty test (2): , ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-mice.impute.2l.bin.R:30:1'): (code run outside of `test_that()`) ── Error: object 'ID' not found Backtrace: ▆ 1. ├─... %>% dplyr::select(-month) at test-mice.impute.2l.bin.R:30:1 2. ├─dplyr::select(., -month) 3. ├─tidyr::fill(., treatment) 4. ├─tidyr::complete(toenail, ID, visit) 5. └─tidyr:::complete.data.frame(toenail, ID, visit) 6. ├─tidyr::expand(data, ...) 7. └─tidyr:::expand.data.frame(data, ...) 8. └─tidyr:::grid_dots(..., `_data` = data) 9. └─rlang::eval_tidy(dot, data = mask) [ FAIL 1 | WARN 0 | SKIP 2 | PASS 379 ] Error: ! Test failures. Execution halted Package: panelr Check: tests New result: ERROR Running ‘testthat.R’ [61s/61s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(panelr) Loading required package: lme4 Loading required package: Matrix Attaching package: 'panelr' The following object is masked from 'package:stats': filter > > test_check("panelr") Saving _problems/test-utils-298.R [ FAIL 1 | WARN 1 | SKIP 0 | PASS 292 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-utils.R:298:3'): extractors work ───────────────────────────── Expected `predict(mod)` to run silently. Actual noise: warnings. [ FAIL 1 | WARN 1 | SKIP 0 | PASS 292 ] Error: ! Test failures. Execution halted Package: performance Check: examples New result: ERROR Running examples in ‘performance-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: check_convergence > ### Title: Convergence test for mixed effects models > ### Aliases: check_convergence > > ### ** Examples > > ## Don't show: > if (require("lme4") && require("glmmTMB")) (if (getRversion() >= "3.4") withAutoprint else force)({ # examplesIf + ## End(Don't show) + data(cbpp, package = "lme4") + set.seed(1) + cbpp$x <- rnorm(nrow(cbpp)) + cbpp$x2 <- runif(nrow(cbpp)) + + model <- lme4::glmer( + cbind(incidence, size - incidence) ~ period + x + x2 + (1 + x | herd), + data = cbpp, + family = binomial() + ) + + check_convergence(model) + + ## Don't show: + }) # examplesIf Loading required package: lme4 Loading required package: Matrix Loading required package: glmmTMB Warning in check_dep_version(dep_pkg = "TMB") : package version mismatch: glmmTMB was built with TMB package version 1.9.17 Current TMB package version is 1.9.18 Please re-install glmmTMB from source or restore original ‘TMB’ package (see '?reinstalling' for more information) > data(cbpp, package = "lme4") > set.seed(1) > cbpp$x <- rnorm(nrow(cbpp)) > cbpp$x2 <- runif(nrow(cbpp)) > model <- lme4::glmer(cbind(incidence, size - incidence) ~ period + x + + x2 + (1 + x | herd), data = cbpp, family = binomial()) boundary (singular) fit: see help('isSingular') > check_convergence(model) Error in h(simpleError(msg, call)) : error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Calls: ... eval -> eval -> -> .handleSimpleError -> h Execution halted Package: performance Check: tests New result: ERROR Running ‘testthat.R’ [59s/30s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(performance) > > test_check("performance") Starting 2 test processes. > test-check_convergence.R: boundary (singular) fit: see help('isSingular') > test-check_collinearity.R: NOTE: 2 fixed-effect singletons were removed (2 observations). Saving _problems/test-check_convergence-14.R > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_itemscale.R: Some of the values are negative. Maybe affected items need to be > test-check_itemscale.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_overdispersion.R: Overdispersion detected. > test-check_overdispersion.R: Underdispersion detected. > test-glmmPQL.R: iteration 1 > test-item_discrimination.R: Some of the values are negative. Maybe affected items need to be > test-item_discrimination.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-item_discrimination.R: Some of the values are negative. Maybe affected items need to be > test-item_discrimination.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-item_discrimination.R: Some of the values are negative. Maybe affected items need to be > test-item_discrimination.R: reverse-coded, e.g. using `datawizard::reverse()`. > test-check_outliers.R: No outliers were detected (p = 0.238). > test-performance_aic.R: Model was not fitted with REML, however, `estimator = "REML"`. Set > test-performance_aic.R: `estimator = "ML"` to obtain identical results as from `AIC()`. [ FAIL 1 | WARN 2 | SKIP 41 | PASS 422 ] ══ Skipped tests (41) ══════════════════════════════════════════════════════════ • On CRAN (37): 'test-bootstrapped_icc_ci.R:2:3', 'test-bootstrapped_icc_ci.R:44:3', 'test-binned_residuals.R:137:3', 'test-binned_residuals.R:164:3', 'test-check_dag.R:1:1', 'test-check_distribution.R:1:1', 'test-check_collinearity.R:169:1', 'test-check_collinearity.R:199:1', 'test-check_model.R:1:1', 'test-check_itemscale.R:1:1', 'test-check_itemscale.R:95:1', 'test-check_predictions.R:2:1', 'test-check_residuals.R:2:3', 'test-check_singularity.R:2:3', 'test-check_singularity.R:30:3', 'test-check_zeroinflation.R:73:3', 'test-check_zeroinflation.R:112:3', 'test-compare_performance.R:1:1', 'test-helpers.R:1:1', 'test-icc.R:2:1', 'test-item_omega.R:1:1', 'test-item_omega.R:31:3', 'test-check_outliers.R:110:3', 'test-check_outliers.R:297:3', 'test-mclogit.R:52:1', 'test-model_performance.bayesian.R:1:1', 'test-model_performance.lavaan.R:1:1', 'test-model_performance.merMod.R:2:3', 'test-model_performance.merMod.R:25:3', 'test-model_performance.psych.R:1:1', 'test-model_performance.rma.R:21:1', 'test-performance_reliability.R:23:3', 'test-pkg-ivreg.R:1:1', 'test-r2_nagelkerke.R:22:3', 'test-r2_nakagawa.R:20:1', 'test-rmse.R:35:3', 'test-test_likelihoodratio.R:55:1' • On Linux (3): 'test-nestedLogit.R:1:1', 'test-r2_bayes.R:1:1', 'test-test_wald.R:1:1' • getRversion() > "4.4.0" is TRUE (1): 'test-check_outliers.R:258:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-check_convergence.R:14:3'): check_convergence ────────────────── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─testthat::expect_true(check_convergence(model)) at test-check_convergence.R:14:3 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. ├─performance::check_convergence(model) 5. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 6. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 7. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 8. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 9. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 10. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 11. │ └─Matrix::solve(Hessian, gradient) 12. └─base::.handleSimpleError(...) 13. └─base (local) h(simpleError(msg, call)) [ FAIL 1 | WARN 2 | SKIP 41 | PASS 422 ] Error: ! Test failures. Execution halted Package: steppedwedge Check: examples New result: ERROR Running examples in ‘steppedwedge-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: print.sw_analysis > ### Title: Summarize a list returned by steppedwedge::analysis() > ### Aliases: print.sw_analysis > > ### ** Examples > > # Load data > test_data <- load_data(time ="period", cluster_id = "cluster", individual_id = NULL, + treatment = "trt", outcome = "outcome_bin", data = sw_data_example) Stepped wedge dataset loaded. Discrete time design with 15 clusters, 5 sequences, and 6 time points. > > # Analysis example: TATE estimand for exposure times 1 through 4 > results_tate <- analyze(dat = test_data, method = "mixed", estimand_type = "TATE", + estimand_time = c(1, 4), exp_time = "ETI", family = poisson) boundary (singular) fit: see help('isSingular') Error in h(simpleError(msg, call)) : error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Calls: analyze ... eval -> eval -> -> .handleSimpleError -> h Execution halted Package: steppedwedge Check: re-building of vignette outputs New result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘steppedwedge.Rmd’ using rmarkdown Quitting from steppedwedge.Rmd:109-119 [unnamed-chunk-8] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error in `h()`: ! error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found --- Backtrace: ▆ 1. ├─steppedwedge::analyze(...) 2. │ └─performance::check_convergence(model_eti_mixed) 3. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 4. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 5. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 6. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ └─Matrix::solve(Hessian, gradient) 10. └─base::.handleSimpleError(...) 11. └─base (local) h(simpleError(msg, call)) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'steppedwedge.Rmd' failed with diagnostics: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found --- failed re-building ‘steppedwedge.Rmd’ SUMMARY: processing the following file failed: ‘steppedwedge.Rmd’ Error: Vignette re-building failed. Execution halted Package: steppedwedge Check: tests New result: ERROR Running ‘testthat.R’ [5s/5s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(steppedwedge) > > test_check("steppedwedge") Stepped wedge dataset loaded. Discrete time design with 2 clusters, 2 sequences, and 3 time points. boundary (singular) fit: see help('isSingular') Saving _problems/test-analyze_data-33.R boundary (singular) fit: see help('isSingular') Saving _problems/test-analyze_data-40.R boundary (singular) fit: see help('isSingular') Saving _problems/test-analyze_data-47.R boundary (singular) fit: see help('isSingular') Saving _problems/test-analyze_data-78.R boundary (singular) fit: see help('isSingular') Saving _problems/test-analyze_data-88.R Stepped wedge dataset loaded. Discrete time design with 2 clusters, 2 sequences, and 3 time points. Stepped wedge dataset loaded. Discrete time design with 2 clusters, 2 sequences, and 3 time points. [ FAIL 5 | WARN 0 | SKIP 0 | PASS 24 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-analyze_data.R:32:3'): Correct model type and estimand_type for IT mixed model ── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─steppedwedge::analyze(...) at test-analyze_data.R:32:3 2. │ └─performance::check_convergence(model_it_mixed) 3. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 4. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 5. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 6. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ └─Matrix::solve(Hessian, gradient) 10. └─base::.handleSimpleError(...) 11. └─base (local) h(simpleError(msg, call)) ── Error ('test-analyze_data.R:39:3'): Correct model type and estimand_type for ETI mixed model, TATE ── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─steppedwedge::analyze(...) at test-analyze_data.R:39:3 2. │ └─performance::check_convergence(model_eti_mixed) 3. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 4. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 5. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 6. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ └─Matrix::solve(Hessian, gradient) 10. └─base::.handleSimpleError(...) 11. └─base (local) h(simpleError(msg, call)) ── Error ('test-analyze_data.R:46:3'): Correct model type and estimand_type for ETI mixed model, PTE ── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─steppedwedge::analyze(...) at test-analyze_data.R:46:3 2. │ └─performance::check_convergence(model_eti_mixed) 3. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 4. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 5. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 6. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ └─Matrix::solve(Hessian, gradient) 10. └─base::.handleSimpleError(...) 11. └─base (local) h(simpleError(msg, call)) ── Error ('test-analyze_data.R:77:3'): Model coefficients are returned correctly ── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─steppedwedge::analyze(...) at test-analyze_data.R:77:3 2. │ └─performance::check_convergence(model_it_mixed) 3. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 4. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 5. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 6. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ └─Matrix::solve(Hessian, gradient) 10. └─base::.handleSimpleError(...) 11. └─base (local) h(simpleError(msg, call)) ── Error ('test-analyze_data.R:87:3'): Function handles different family and link functions ── Error in `h(simpleError(msg, call))`: error in evaluating the argument 'a' in selecting a method for function 'solve': object 'Hessian' not found Backtrace: ▆ 1. ├─steppedwedge::analyze(...) at test-analyze_data.R:87:3 2. │ └─performance::check_convergence(model_it_mixed) 3. │ ├─insight::is_converged(x, tolerance = tolerance, ...) 4. │ └─insight:::is_converged.merMod(x, tolerance = tolerance, ...) 5. │ ├─base::with(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 6. │ ├─base::with.default(x@optinfo$derivs, Matrix::solve(Hessian, gradient)) 7. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 8. │ │ └─base::eval(substitute(expr), data, enclos = parent.frame()) 9. │ └─Matrix::solve(Hessian, gradient) 10. └─base::.handleSimpleError(...) 11. └─base (local) h(simpleError(msg, call)) [ FAIL 5 | WARN 0 | SKIP 0 | PASS 24 ] Error: ! Test failures. Execution halted Package: trouBBlme4SolveR Check: re-building of vignette outputs New result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘introduction.Rnw’ using Sweave Loading required package: Matrix Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 0.0964374 (tol = 0.002, component 1) See ?lme4::convergence and ?lme4::troubleshooting. Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio - Rescale variables? Correlation matrix not shown by default, as p = 16 > 12. Use print(res$value, correlation=TRUE) or vcov(res$value) if you need it Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 0.13305 (tol = 0.002, component 1) See ?lme4::convergence and ?lme4::troubleshooting. boundary (singular) fit: see help('isSingular') Correlation matrix not shown by default, as p = 16 > 12. Use print(res$value, correlation=TRUE) or vcov(res$value) if you need it Numeric predictors rescaled!!! The default multilevel model is singular since the between-Day variance for the intercept and the between-SUR.ID variance for the intercepts are zero. Then, we consider the next model after removing these random effects. Correlation matrix not shown by default, as p = 16 > 12. Use print(res$value, correlation=TRUE) or vcov(res$value) if you need it boundary (singular) fit: see help('isSingular') The default multilevel model is singular since the between-Subject variance for the nsexage slope is zero. Then, we consider the next model after removing this random effect. boundary (singular) fit: see help('isSingular') The default multilevel model is singular since all the random-effects variances are zero. Then, we consider the next model after removing the random effects. Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue - Rescale variables? Numeric predictors rescaled!!! Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 0.00276091 (tol = 0.002, component 1) See ?lme4::convergence and ?lme4::troubleshooting. Loading required namespace: ggplot2 Warning: Some predictor variables are on very different scales: consider rescaling. You may also use (g)lmerControl(autoscale = TRUE) to improve numerical stability. Error: processing vignette 'introduction.Rnw' failed with diagnostics: chunk 11 Error in dwmw(fit_1, scale = TRUE, verbose = TRUE) : Too many iterations!! to get the model carat ~ depth + table + price + x + y + z + (1 + price | cut) to converge. Check it!! --- failed re-building ‘introduction.Rnw’ SUMMARY: processing the following file failed: ‘introduction.Rnw’ Error: Vignette re-building failed. Execution halted