R version 4.4.0 alpha (2024-03-26 r86209 ucrt) Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if (.Platform$OS.type != "windows") { + + library(lme4) + library(testthat) + + source(system.file("testdata/lme-tst-funs.R", package="lme4", mustWork=TRUE)) + ##-> gSim(), a general simulation function ... + + ## hand-coded Pearson residuals {for sumFun() } + mypresid <- function(x) { + mu <- fitted(x) + (getME(x,"y") - mu) * sqrt(weights(x)) / sqrt(x@resp$family$variance(mu)) + } + + ## should be equal (up to numerical error) to weights(.,type="working") + workingWeights <- function(mod) mod@resp$weights*(mod@resp$muEta()^2)/mod@resp$variance() + + ##' Sum of weighted residuals, 4 ways; the last three are identical + sumFun <- function(m) { + wrss1 <- m@devcomp$cmp["wrss"] + wrss2 <- sum(residuals(m,type="pearson")^2) + wrss3 <- sum(m@resp$wtres^2) + ## compare to hand-fitted Pearson resids ... + wrss4 <- sum(mypresid(m)^2) + c(wrss1,wrss2,wrss3,wrss4) + } + ## The relative "error"/differences of the weights w[] entries + rel.diff <- function(w) abs(1 - w[-1]/w[1]) + + set.seed(101) + + ## GAMMA + g0 <- glmer(y~x+(1|block),data=gSim(),family=Gamma) + expect_true(all(rel.diff(sumFun(g0)) < 1e-13)) + expect_equal(weights(g0, type = "working"), workingWeights(g0), + tolerance = 1e-4) ## FIXME: why is such a high tolerance required? + + ## BERNOULLI + g1 <- glmer(y~x+(1|block),data=gSim(family=binomial(),nbinom=1), + family=binomial) + expect_true(all(rel.diff(sumFun(g1)) < 1e-13)) + expect_equal(weights(g1, type = "working"), workingWeights(g1), + tolerance = 1e-5) ## FIXME: why is such a high tolerance required? + + + ## POISSON + (n <- nrow(d.P <- gSim(family=poisson()))) + g2 <- glmer(y ~ x + (1|block), data = d.P, family=poisson) + g2W <- glmer(y ~ x + (1|block), data = d.P, family=poisson, weights = rep(2,n)) + expect_true(all(rel.diff(sumFun(g2 )) < 1e-13)) + expect_true(all(rel.diff(sumFun(g2W)) < 1e-13)) + ## correct + expect_equal(weights(g2, type = "working"), workingWeights(g2), + tolerance = 1e-5) ## FIXME: why is such a high tolerance required? + expect_equal(weights(g2W, type = "working"), workingWeights(g2W), + tolerance = 1e-5) ## FIXME: why is such a high tolerance required? + + + ## non-Bernoulli BINOMIAL + g3 <- glmer(y ~ x + (1|block), data= gSim(family=binomial(), nbinom=10), + family=binomial) + expect_true(all(rel.diff(sumFun(g3)) < 1e-13)) + expect_equal(weights(g3, type = "working"), workingWeights(g3), + tolerance = 1e-4) ## FIXME: why is such a high tolerance required? + + + + d.b.2 <- gSim(nperblk = 2, family=binomial()) + g.b.2 <- glmer(y ~ x + (1|block), data=d.b.2, family=binomial) + + expect_true(all(rel.diff(sumFun(g.b.2 )) < 1e-13)) + + + ## Many blocks of only 2 observations each - (but nicely balanced) + ## Want this "as" https://github.com/lme4/lme4/issues/47 + ## (but it "FAILS" survival already): + ## + ## n2 = n/2 : + n2 <- 2048 + if(FALSE) + n2 <- 100 # for building/testing + set.seed(47) + dB2 <- gSim(n2, nperblk = 2, x= rep(0:1, each= n2), family=binomial()) + ## -- -- --- -------- + gB2 <- glmer(y ~ x + (1|block), data=dB2, family=binomial) + expect_true(all(rel.diff(sumFun(gB2)) < 1e-13)) + + ## NB: Finite sample bias of \hat\sigma_1 and \hat\beta_1 ("Intercept") + ## tend to zero only slowly for n2 -> Inf, e.g., for + ## n2 = 2048, b1 ~= 4.3 (instead of 4); s1 ~= 1.3 (instead of 1) + + ## FAILS ----- + ## library(survival) + ## (gSurv.B2 <- clogit(y ~ x + strata(block), data=dB2)) + ## ## --> Error in Surv(rep(1, 200L), y) : Time and status are different lengths + ## summary(gSurv.B2) + ## (SE.surf <- sqrt(diag(vcov(gSurv.B2)))) + + + + g3 <- glmer(y ~ x + (1|block),data=gSim(family=binomial(),nbinom=10), + family=binomial) + expect_equal(var(sumFun(g3)),0) + + ## check dispersion parameter + ## (lowered tolerance to pass checks on my machine -- SCW) + expect_equal(sigma(g0)^2, 0.4888248, tolerance=1e-4) + + } ## skip on windows (for speed) > > proc.time() user system elapsed 0.20 0.10 0.28