R Under development (unstable) (2023-11-03 r85470 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(lme4) Loading required package: Matrix > library(testthat) > > (testLevel <- lme4:::testLevel()) [1] 1 > L <- load(system.file("testdata/lme-tst-fits.rda", + package="lme4", mustWork=TRUE)) > > if (testLevel>1) { + if (getRversion() > "3.0.0") { + ## saved fits are not safe with old R versions + + fm1 <- fit_sleepstudy_1 + + + s1 <- simulate(fm1,seed=101)[[1]] + s2 <- simulate(fm1,seed=101,use.u=TRUE) + s3 <- simulate(fm1,seed=101,nsim=10) + s4 <- simulate(fm1,seed=101,use.u=TRUE,nsim=10) + stopifnot(length(s3)==10,all(sapply(s3,length)==180), + length(s4)==10,all(sapply(s4,length)==180)) + + ## binomial (2-column and prob/weights) + gm1 <- fit_cbpp_1 + gm2 <- fit_cbpp_3 + + gm1_s1 <- simulate(gm1,seed=101)[[1]] + gm1_s2 <- simulate(gm2,seed=101)[[1]] + stopifnot(all.equal(gm1_s1[,1]/rowSums(gm1_s1),gm1_s2)) + gm1_s3 <- simulate(gm1,seed=101,use.u=TRUE) + gm1_s4 <- simulate(gm1,seed=101,nsim=10) + gm1_s5 <- simulate(gm2,seed=101,nsim=10) + stopifnot(length(gm1_s4)==10,all(sapply(gm1_s4,ncol)==2),all(sapply(gm1_s4,nrow)==56)) + stopifnot(length(gm1_s5)==10,all(sapply(gm1_s5,length)==56)) + + ## binomial (factor): Kubovy bug report 1 Aug 2013 + d <- data.frame(y=factor(rep(letters[1:2],each=100)), + f=factor(rep(1:10,10))) + g1 <- glmer(y~(1|f),data=d,family=binomial) + s6 <- simulate(g1,nsim=10) + stopifnot(length(s6)==10,all(sapply(s6,length)==200)) + + ## test explicitly stated link function + gm3 <- glmer(cbind(incidence, size - incidence) ~ period + + (1 | herd), data = cbpp, family = binomial(link="logit")) + s4 <- simulate(gm3,seed=101)[[1]] + stopifnot(all.equal(gm1_s1,s4)) + + cbpp$obs <- factor(seq(nrow(cbpp))) + gm4 <- fit_cbpp_2 + ## glmer(cbind(incidence, size - incidence) ~ period + + ## (1 | herd) + (1|obs), data = cbpp, family = binomial) + + s5 <- simulate(gm4,seed=101)[[1]] + s6 <- simulate(gm4,seed=101,use.u=TRUE)[[1]] + + ## Bernoulli + ## works, but too slow + if (testLevel > 2) { + if(require("mlmRev")) { + data(guImmun, package="mlmRev") + table(guImmun$immun) + ## N Y + ## 1195 964 + g1i <- glmer(immun ~ kid2p+mom25p+ord+ethn+momEd+husEd+momWork+rural+pcInd81+ + (1|comm/mom), family="binomial", data=guImmun) + ## In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : + ## Model failed to converge with max|grad| = 0.326795 (tol = 0.002, component 1) + sg1 <- simulate(g1i) + if(FALSE) { ## similar: not relevant here {comment out for 'R CMD check'}: + ## if(require("glmmTMB")) { + g2 <- glmmTMB(immun ~ kid2p+mom25p+ord+ethn+momEd+husEd+momWork+rural+pcInd81+ + (1|comm/mom), family="binomial", data=guImmun) + sg2 <- simulate(g2) + ## } + } + } + } + + set.seed(101) + d <- data.frame(f = factor(rep(LETTERS[1:10],each=10))) + d$x <- runif(nrow(d)) + u <- rnorm(10) + d$eta <- with(d, 1 + 2*x + u[f]) + d$y <- rbinom(nrow(d), size=1, prob = plogis(d$eta)) + + g1 <- glmer(y ~ x + (1|f), data=d, family="binomial") + ## tolPwrss=1e-5: no longer necessary + + if (testLevel > 2) { ## trying a set of glmerControl(tolPwrss = 10^t) : + allcoef <- function(x) c(dev = deviance(x), th = getME(x,"theta"), beta = getME(x,"beta")) + tfun <- function(t) { + gg <- try( ## << errors (too small tolPwrss) are still printed : + glmer(y~x+(1|f),data=d,family="binomial", + control = glmerControl(tolPwrss = 10^t))) + if (inherits(gg,"try-error")) rep(NA,4) else allcoef(gg) + } + tvec <- seq(-4,-16,by=-0.25) + tres <- cbind(t = tvec, t(sapply(tvec, tfun))) + print(tres) + } + + gm_s5 <- simulate(g1, seed=102)[[1]] + + d$y <- factor(c("N","Y")[d$y+1]) + g1B <- glmer(y ~ x + (1|f), data=d, family="binomial") ## ,tolPwrss=1e-5) + s1B <- simulate(g1B, seed=102)[[1]] + stopifnot(all.equal(gm_s5,as.numeric(s1B)-1)) + + ## another Bernoulli + if(requireNamespace("mlmRev")) { + data(Contraception, package="mlmRev") + gm5 <- glmer(use ~ urban+age+livch+(1|district), Contraception, binomial) + s3 <- simulate(gm5) + } + d$y <- rpois(nrow(d),exp(d$eta)) + gm6 <- glmer(y~x+(1|f),data=d,family="poisson") + s4 <- simulate(gm6) + + ## simulation 'from scratch' with formulas: + ## binomial + ## form <- formula(gm1)[-2] + form <- ~ (1|herd) + period + gm1_s4 <- simulate(form,newdata=model.frame(gm1), + newparams=list(theta=getME(gm1,"theta"), + beta=fixef(gm1)), + family=binomial, + weights=rowSums(model.frame(gm1)[[1]]), + seed=101)[[1]] + stopifnot(all.equal(gm1_s2,gm1_s4)) + + gm1_s5 <- simulate(formula(gm1),newdata=cbpp, + newparams=list(theta=getME(gm1,"theta"), + beta=fixef(gm1)), + family=binomial, + seed=101)[[1]] + stopifnot(all.equal(gm1_s1,gm1_s5)) + + tt <- getME(gm1,"theta") + bb <- fixef(gm1) + expect_message(simulate(form,newdata=model.frame(gm1), + newparams=list(theta=unname(tt), + beta=fixef(gm1)), + family=binomial, + weights=rowSums(model.frame(gm1)[[1]]), + seed=101),"assuming same order") + expect_error(simulate(form,newdata=model.frame(gm1), + newparams=list(theta=setNames(tt,"abc"), + beta=fixef(gm1)), + family=binomial, + weights=rowSums(model.frame(gm1)[[1]]), + seed=101),"mismatch between") + expect_message(simulate(form,newdata=model.frame(gm1), + newparams=list(theta=tt, + beta=unname(bb)), + family=binomial, + weights=rowSums(model.frame(gm1)[[1]]), + seed=101),"assuming same order") + expect_error(simulate(form,newdata=model.frame(gm1), + newparams=list(theta=tt, + beta=setNames(bb,c("abc",names(bb)[-1]))), + family=binomial, + weights=rowSums(model.frame(gm1)[[1]]), + seed=101),"mismatch between") + + ## Gaussian + form <- formula(fm1)[-2] + s7 <- simulate(form,newdata=model.frame(fm1), + newparams=list(theta=getME(fm1,"theta"), + beta=fixef(fm1), + sigma=sigma(fm1)), + family=gaussian, + seed=101)[[1]] + stopifnot(all.equal(s7,s1)) + + ## TO DO: wider range of tests, including offsets ... + + }# R >= 3.0.0 + } ## testLevel>1 > > proc.time() user system elapsed 1.35 0.14 1.50