library(lgcp) n <- 3 # "number of iterations" m <- 3 # "number of aggregated time points" temporal.fitted <- c(1,2,3) # required to set up MonteCarloAverage SpatialOnlyMode <- FALSE M <- 5 N <- 5 Y <- list() for(i in 1:n){ Y[[i]] <- list() for (j in 1:m){ Y[[i]][[j]] <- matrix(runif(25),5,5) } } fun1 <- function(Y){ return(Y) } fun2 <- function(Y){ return(Y^2) } mca <- MonteCarloAverage(list("fun1","fun2")) GAinitialise(mca) oldtags <- list() for(i in 1:n){ oldtags$Y <- Y[[i]] GAupdate(mca) } GAfinalise(mca) ret <- GAreturnvalue(mca) Ymean <- as.list(rep(0,m)) Ymean2 <- as.list(rep(0,m)) for(i in 1:n){ for (j in 1:m){ Ymean[[j]] <- Ymean[[j]] + Y[[i]][[j]] Ymean2[[j]] <- Ymean2[[j]] + Y[[i]][[j]]^2 } } for (j in 1:m){ Ymean[[j]] <- Ymean[[j]]/n Ymean2[[j]] <- Ymean2[[j]]/n } for (j in 1:m){ print(all(ret$return[[1]][[j]]==Ymean[[j]])) print(all(ret$return[[2]][[j]]==Ymean2[[j]])) }