R Under development (unstable) (2024-02-14 r85901 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(lfe) Loading required package: Matrix > set.seed(43) > options(lfe.threads=2,digits=5,warn=1) > > g1 <- 80 > g2 <- 20 > g3 <- 12 > N <- 1000 > clu1 <- sample(g1,N, replace=TRUE) > clu2 <- (clu1 + sample(7,N,replace=TRUE)-1) %% g2 > clu3 <- (clu2 + sample(3,N,replace=TRUE)-1) %% g3 > clu1 <- factor(clu1) > clu2 <- factor(clu2) > clu3 <- factor(clu3) > # group specific covariate effects > ceff1 <- rnorm(nlevels(clu1), sd=0.5)[clu1] > ceff2 <- rnorm(nlevels(clu2), sd=0.4)[clu2] > ceff3 <- rnorm(nlevels(clu3))[clu3] > > # group specific errors > err1 <- rnorm(nlevels(clu1), sd=0.8)[clu1] > err2 <- rnorm(nlevels(clu2))[clu2] > err3 <- rnorm(nlevels(clu3), sd=0.5)[clu3] > > x1 <- ceff1 + 0.3*ceff2 + rnorm(N) > x2 <- ceff2 + 0.2*ceff3 + rnorm(N) > x3e <- ceff3 + 0.2*(ceff2+ceff1) + rnorm(N) > > f1 <- factor(sample(8,N,replace=TRUE)) > x3 <- as.vector(as(f1,'sparseMatrix') %*% x3e)[f1]/tabulate(f1)[f1] > err <- err1 + err2 + err3 + abs(x1+x2*x3)*rnorm(N) > y <- x1 + x2 + x3 + err > data <- data.frame(y,x1,x2,x3,f1,clu1,clu2,clu3) > clu <- list('clu1', 'clu2', 'clu3') > summary(felm(y ~ x1 + x2 + f1|0|0|clu1+clu2+clu3, data)) Warning in newols(mm, nostats = nostats[1], exactDOF = exactDOF, onlyse = onlyse, : Negative eigenvalues set to zero in multiway clustered variance matrix. See felm(...,psdef=FALSE) Warning in chol.default(mat, pivot = TRUE, tol = tol) : the matrix is either rank-deficient or not positive definite Call: felm(formula = y ~ x1 + x2 + f1 | 0 | 0 | clu1 + clu2 + clu3, data = data) Residuals: Min 1Q Median 3Q Max -6.408 -1.298 0.066 1.323 8.091 Coefficients: Estimate Cluster s.e. t value Pr(>|t|) (Intercept) 0.3142 0.4159 0.76 0.45 x1 1.0244 0.0789 12.98 <2e-16 *** x2 0.8472 0.1173 7.22 1e-12 *** f12 0.3737 0.2062 1.81 0.07 . f13 0.2362 0.1796 1.32 0.19 f14 -0.2908 0.3184 -0.91 0.36 f15 0.2397 0.2298 1.04 0.30 f16 -0.3411 0.2236 -1.53 0.13 f17 0.0382 0.2242 0.17 0.86 f18 0.0986 0.1340 0.74 0.46 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.97 on 990 degrees of freedom Multiple R-squared(full model): 0.372 Adjusted R-squared: 0.366 Multiple R-squared(proj model): 0.372 Adjusted R-squared: 0.366 F-statistic(full model, *iid*):65.1 on 9 and 990 DF, p-value: <2e-16 F-statistic(proj model): 1.31e+04 on 9 and 11 DF, p-value: <2e-16 > #gclu <- structure(clu, method='gaure') > #summary(felm(y ~ x1 + x2 + f1|0|0|clu1+clu2+clu3, data, cmeth='gaure')) > #summary(est <- felm(y ~ x1 + x2 | f1, data, clustervar=gclu)) > #ef <- structure(function(x,addnames) { > # c(x[1],x[2:8]-x[1]) > #}, verified=TRUE) > #getfe(est,ef=ef,se=TRUE, bN=200) > > proc.time() user system elapsed 0.92 0.06 0.96