R Under development (unstable) (2023-09-30 r85239 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #-*- R -*- > > ## Script from Fourth Edition of `Modern Applied Statistics with S' > > # Chapter 4 Graphical Output > > library(MASS) > library(lattice) > trellis.device(postscript, file="MASS-ch04.ps", width=8, height=6, + pointsize=9) > options(echo=T, width=65, digits=5) > > > # 4.2 Basic plotting functions > > topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25) > topo.mar <- list(x = seq(0, 6.5, 0.2), y=seq(0, 6.5, 0.2)) > topo.lo <- predict(topo.loess, expand.grid(topo.mar)) > topo.lo1 <- cbind(expand.grid(x=topo.mar$x, y=topo.mar$y), + z=as.vector(topo.lo)) > contourplot(z ~ x * y, topo.lo1, aspect = 1, + at = seq(700, 1000, 25), xlab = "", ylab = "", + panel = function(x, y, subscripts, ...) { + panel.levelplot(x, y, subscripts, ...) + panel.xyplot(topo$x, topo$y, cex = 0.5) + } + ) > > > > > > > > # 4.5 Trellis graphics > > > xyplot(time ~ dist, data = hills, + panel = function(x, y, ...) { + panel.xyplot(x, y, ...) + panel.lmline(x, y, type = "l") + panel.abline(lqs(y ~ x), lty = 3) + # identify(x, y, row.names(hills)) + } + ) > > bwplot(Expt ~ Speed, data = michelson, ylab = "Experiment No.", + main = "Speed of Light Data") > > > data(swiss) > splom(~ swiss, aspect = "fill", + panel = function(x, y, ...) { + panel.xyplot(x, y, ...); panel.loess(x, y, ...) + } + ) > > sps <- trellis.par.get("superpose.symbol") > sps$pch <- 1:7 > trellis.par.set("superpose.symbol", sps) > xyplot(Time ~ Viscosity, data = stormer, groups = Wt, + panel = panel.superpose, type = "b", + key = list(columns = 3, + text = list(paste(c("Weight: ", "", ""), + unique(stormer$Wt), "gms")), + points = Rows(sps, 1:3) + ) + ) > rm(sps) > > topo.plt <- expand.grid(topo.mar) > topo.plt$pred <- as.vector(predict(topo.loess, topo.plt)) > levelplot(pred ~ x * y, topo.plt, aspect = 1, + at = seq(690, 960, 10), xlab = "", ylab = "", + panel = function(x, y, subscripts, ...) { + panel.levelplot(x, y, subscripts, ...) + panel.xyplot(topo$x,topo$y, cex = 0.5, col = 1) + } + ) > > ## if (F) { > wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5), + drape = T, screen = list(z = -150, x = -60), + colorkey = list(space="right", height=0.6)) > ## } > > lcrabs.pc <- predict(princomp(log(crabs[,4:8]))) > crabs.grp <- c("B", "b", "O", "o")[rep(1:4, each = 50)] > splom(~ lcrabs.pc[, 1:3], groups = crabs.grp, + panel = panel.superpose, + key = list(text = list(c("Blue male", "Blue female", + "Orange Male", "Orange female")), + points = Rows(trellis.par.get("superpose.symbol"), 1:4), + columns = 4) + ) > > sex <- crabs$sex > levels(sex) <- c("Female", "Male") > sp <- crabs$sp > levels(sp) <- c("Blue", "Orange") > splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0) > > Quine <- quine > levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal") > levels(Quine$Sex) <- c("Female", "Male") > levels(Quine$Age) <- c("primary", "first form", + "second form", "third form") > levels(Quine$Lrn) <- c("Average learner", "Slow learner") > bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine) > > bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2), + strip = function(...) strip.default(..., style = 1)) > > stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, + jitter = TRUE, layout = c(4, 2)) > > stripplot(Age ~ Days | Eth*Sex, data = Quine, + groups = Lrn, jitter = TRUE, + panel = function(x, y, subscripts, jitter.data = F, ...) { + if(jitter.data) y <- jitter(as.numeric(y)) + panel.superpose(x, y, subscripts, ...) + }, + xlab = "Days of absence", + between = list(y = 1), par.strip.text = list(cex = 0.7), + key = list(columns = 2, text = list(levels(Quine$Lrn)), + points = Rows(trellis.par.get("superpose.symbol"), 1:2) + ), + strip = function(...) + strip.default(..., strip.names = c(TRUE, TRUE), style = 1) + ) > > fgl0 <- fgl[ ,-10] # omit type. > fgl.df <- data.frame(type = rep(fgl$type, 9), + y = as.vector(as.matrix(fgl0)), + meas = factor(rep(1:9, each = 214), labels = names(fgl0))) > stripplot(type ~ y | meas, data = fgl.df, + scales = list(x = "free"), xlab = "", cex = 0.5, + strip = function(...) strip.default(style = 1, ...)) > > if(F) { # no data supplied + xyplot(ratio ~ scant | subject, data = A5, + xlab = "scan interval (years)", + ylab = "ventricle/brain volume normalized to 1 at start", + subscripts = TRUE, ID = A5$ID, + strip = function(factor, ...) + strip.default(..., factor.levels = labs, style = 1), + layout = c(8, 5, 1), + skip = c(rep(FALSE, 37), rep(TRUE, 1), rep(FALSE, 1)), + panel = function(x, y, subscripts, ID) { + panel.xyplot(x, y, type = "b", cex = 0.5) + which <- unique(ID[subscripts]) + panel.xyplot(c(0, 1.5), pr3[names(pr3) == which], + type = "l", lty = 3) + if(which == 303 || which == 341) points(1.4, 1.3) + }) + } > > Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25) > xyplot(Fertility ~ Education | Cath, data = swiss, + span = 1, layout = c(6, 1), aspect = 1, + panel = function(x, y, span) { + panel.xyplot(x, y); panel.loess(x, y, span) + } + ) > > Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0) > Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25) > xyplot(Fertility ~ Education | Agr * Cath2, data = swiss, + span = 1, aspect = "xy", + panel = function(x, y, span) { + panel.xyplot(x, y); panel.loess(x, y, span) + } + ) > > Cath Data: [1] 9.96 84.84 93.40 33.77 5.16 90.57 92.85 97.16 [9] 97.67 91.38 98.61 8.52 2.27 4.43 2.82 24.20 [17] 3.30 12.11 2.15 2.84 5.23 4.52 15.14 4.20 [25] 2.40 5.23 2.56 7.72 18.46 6.10 99.71 99.68 [33] 100.00 98.96 98.22 99.06 99.46 96.83 5.62 13.79 [41] 11.22 16.92 4.97 8.65 42.34 50.43 58.33 Intervals: min max count 1 2.14 4.53 10 2 4.19 7.73 10 3 6.09 16.93 10 4 13.78 84.85 10 5 58.32 98.23 10 6 97.15 100.01 10 Overlap between adjacent intervals: [1] 3 2 3 2 3 > levels(Cath) [,1] [,2] [1,] 2.14 4.53 [2,] 4.19 7.73 [3,] 6.09 16.93 [4,] 13.78 84.85 [5,] 58.32 98.23 [6,] 97.15 100.01 > plot(Cath, aspect = 0.3) > > # End of ch04 > > proc.time() user system elapsed 1.54 0.03 1.57