# Methods #### # test method with deterministic result mTest1 = lcMethodTestLMKM(nClusters = 1) mTest2 = mTest = lcMethodTestLMKM(nClusters = 2) mTest3 = lcMethodTestLMKM(nClusters = 3) mTest4 = lcMethodTestLMKM(nClusters = 4) # method that produces a random result each time mRandom = lcMethodTestRandom() # method that produces an error when fitted mError = lcMethodError() # Models #### # hard cluster models testModel1 = latrend(mTest, data = testLongData, nClusters = 1) testModel2 = testModel = latrend(mTest, data = testLongData, nClusters = 2) testModel3 = latrend(mTest, data = testLongData, nClusters = 3) testModel4 = latrend(mTest, data = testLongData, nClusters = 4) rngModel1 = latrend(mRandom, data = testLongData, nClusters = 1) rngModel2 = rngModel = latrend(mRandom, data = testLongData, nClusters = 2) # fuzzy cluster models # fuzzyModel1 = latrend(lcMethodTestLcmmGMM(), testLongData, nClusters = 1) # fuzzyModel2 = latrend(lcMethodTestLcmmGMM(), testLongData, nClusters = 2) # fuzzyModel3 = latrend(lcMethodTestLcmmGMM(), testLongData, nClusters = 3)