skip_on_cran() skip_on_ci() skip_on_os('windows') skip_if_not_installed('parallel') skip_if_not_installed('doParallel') skip_if(parallel::detectCores(logical = FALSE) < 2) init_methodSleep = expression({ setClass('lcMethodSleep', contains = 'lcMethodRandom') setMethod('fit', 'lcMethodSleep', function(method, data, envir, verbose, ...) { stopifnot( is.data.frame(data), nrow(data) > 0 ) Sys.sleep(method$sleep) callNextMethod() }) }) eval(init_methodSleep) if (.Platform$OS.type == 'unix') { cl = parallel::makeCluster(2, type = 'FORK') } else { cl = parallel::makeCluster(2) # init cl parallel::clusterEvalQ(cl, expr = library(latrend)) do.call(parallel::clusterEvalQ, list(cl, init_methodSleep)) } doParallel::registerDoParallel(cl) newTestData = copy(testLongData) mSleep = new('lcMethodSleep', response = 'Value', alpha = 10, sleep = 1, center = meanNA, time = 'Assessment', id = 'Traj', nClusters = 2, name = 'random' ) # need a long sleep time to counteract the large start-up overhead time in Windows mSleep10 = update(mSleep, sleep = 10) test_that('parallel latrendRep', { time = system.time({ output = latrendRep(mSleep10, data = newTestData, .rep = 2, .parallel = TRUE) }) expect_lt(time['elapsed'], 18) expect_is(output, 'lcModels') expect_length(output, 2) expect_is(output[[1]], 'lcModel') }) test_that('parallel latrendRep with lcmm', { mGmm = lcMethodTestLcmmGMM() expect_warning({ # warning for seed output = latrendRep(mGmm, data = newTestData, .rep = 2, .parallel = TRUE) }) expect_is(output, 'lcModels') expect_length(output, 2) expect_is(output[[1]], 'lcModel') }) test_that('parallel latrendBatch with 2 methods', { time = system.time({ output = latrendBatch(list(mSleep10, mSleep10), data = newTestData, parallel = TRUE) }) expect_lt(time['elapsed'], 18) expect_is(output, 'lcModels') expect_length(output, 2) expect_is(output[[1]], 'lcModel') }) test_that('parallel latrendBatch with lcmm', { mGmm = lcMethodTestLcmmGMM() output = latrendBatch(list(mGmm, mGmm), data = newTestData, parallel = TRUE) expect_is(output, 'lcModels') expect_length(output, 2) expect_is(output[[1]], 'lcModel') }) test_that('parallel latrendBatch with local data', { localData = generateLongData( sizes = c(20, 30), fixed = Value ~ 1 + Assessment, cluster = ~ 1 + Assessment, random = ~ 1, id = 'Traj', data = data.frame(Assessment = seq(0, 1, by = .1)), fixedCoefs = c(0, 0), clusterCoefs = cbind(c(-2, 1), c(2, -1)), randomScales = cbind(.1, .1), noiseScales = c(.1, .1), clusterNames = c('A', 'B'), shuffle = TRUE ) output = latrendBatch(list(mSleep, mSleep), data = localData, parallel = TRUE) expect_is(output, 'lcModels') expect_length(output, 2) }) test_that('parallel latrendBatch with local data list', { a = 20 b = 30 localDataList = lapply(1:2, function(seed) { set.seed(seed) generateLongData( sizes = c(a, b), fixed = Value ~ 1 + Assessment, cluster = ~ 1 + Assessment, random = ~ 1, id = 'Traj', data = data.frame(Assessment = seq(0, 1, by = .1)), fixedCoefs = c(0, 0), clusterCoefs = cbind(c(-2, 1), c(2, -1)), randomScales = cbind(.1, .1), noiseScales = c(.1, .1), clusterNames = c('A', 'B'), shuffle = TRUE ) }) output = latrendBatch(list(mSleep), data = localDataList, parallel = TRUE) expect_is(output, 'lcModels') expect_length(output, 2) }) test_that('parallel latrendBoot with 2 repetitions', { time = system.time({ output = latrendBoot(mSleep10, data = newTestData, samples = 2, parallel = TRUE) }) expect_lt(time['elapsed'], 18) expect_is(output, 'lcModels') expect_length(output, 2) expect_is(output[[1]], 'lcModel') }) test_that('parallel latrendCV with 2 folds', { time = system.time({ output = latrendCV(mSleep10, data = newTestData, folds = 2, parallel = TRUE) }) expect_lt(time['elapsed'], 18) expect_is(output, 'lcModels') expect_length(output, 2) expect_is(output[[1]], 'lcModel') }) # cleanup if (exists('cl')) { parallel::stopCluster(cl) } foreach::registerDoSEQ()