lambda <- 4 * 2.2064E-3 discr <- 5 w <- owin(xrange = c(0, 100), c(0, 100)) if (identical(Sys.getenv("NOT_CRAN"), "true")){ w <- owin(xrange = c(0, 100) * 3, yrange = c(0, 100) * 3) } xi <- rbdd(lambda, discr, w) if (identical(Sys.getenv("NOT_CRAN"), "true")){ xiimg <- as.im(xi, W = w, eps = c(0.5, 0.5), na.replace = 0) } else { xiimg <- as.im(xi, W = w, eps = c(2, 2), na.replace = 0) } xi.p <- sum(xiimg) / sum(is.finite(xiimg$v)) #estimate covariance covarest.frim <- racscovariance(xiimg, estimators = "pickaH", drop = TRUE) # # # saved calculation of true coverage fraction variance # true.covar <- bddcovar(covarest.frowin$xrange, # covarest.frowin$yrange, # eps = c(covarest.frowin$xstep/2, covarest.frowin$ystep/2), # lambda = lambda, # discr = discr) # true.p <- bddcoverageprob(lambda, discr) # # setcovB <- setcov(w) # integrand <- eval.im((thcovar-(true.p^2))*setcovB, harmonize = TRUE) # true.var.p <- ((1/(area.owin(w))^2)*sum(integrand)*integrand$xstep*integrand$ystep) # saveRDS(true.var.p, "true.var.p.RDS")