# Model with non-linearities and interactions fit <- lm( Sepal.Length ~ poly(Petal.Width, degree = 2L) * Species + Petal.Length, data = iris ) x <- c("Petal.Width", "Species", "Petal.Length") preds <- unname(predict(fit, iris)) s <- permshap(fit, iris[c(1L, 51L, 101L), x], bg_X = iris, verbose = FALSE) test_that("Baseline equals average prediction on background data", { expect_equal(s$baseline, mean(iris$Sepal.Length)) }) test_that("SHAP + baseline = prediction", { expect_equal(rowSums(s$S) + s$baseline, preds[c(1L, 51L, 101L)]) }) test_that("verbose is chatty", { capture_output( expect_message( permshap(fit, iris[c(1L, 51L, 101L), x], bg_X = iris, verbose = TRUE) ) ) }) test_that("large background data cause warning", { large_bg <- iris[rep(1:150, 230), ] expect_warning( permshap(fit, iris[1L, x], bg_X = large_bg, verbose = FALSE) ) }) test_that("using foreach (non-parallel) gives the same as normal mode", { s_foreach <- suppressWarnings( permshap( fit, iris[c(1L, 51L, 101L), x], bg_X = iris, verbose = FALSE, parallel = TRUE ) ) expect_equal(s, s_foreach) }) test_that("Decomposing a single row works", { s <- permshap(fit, iris[1L, x], bg_X = iris, verbose = FALSE) expect_equal(s$baseline, mean(iris$Sepal.Length)) expect_equal(rowSums(s$S) + s$baseline, preds[1]) }) test_that("Background data can contain additional columns", { ks4 <- permshap(fit, iris[1L, x], bg_X = cbind(d = 1, iris), verbose = FALSE) expect_true(is.kernelshap(ks4)) }) test_that("Background data can contain only one single row", { expect_true( is.kernelshap(permshap(fit, iris[1L, x], bg_X = iris[150L, ], verbose = FALSE)) ) expect_true( is.kernelshap(permshap(fit, iris[1:10, x], bg_X = iris[150L, ], verbose = FALSE)) ) }) test_that("feature_names can drop columns from SHAP calculations", { s_f <- permshap( fit, iris[c(1L, 51L, 101L), ], bg_X = iris, feature_names = x, verbose = FALSE ) expect_equal(within(unclass(s), rm(X)), within(unclass(s_f), rm(X))) }) test_that("feature_names can rearrange column names in result", { s_f2 <- permshap( fit, iris[c(1L, 51L, 101L), ], bg_X = iris, feature_names = rev(x), verbose = FALSE ) expect_equal(s$S, s_f2$S[, x]) }) test_that("feature_names must be in colnames(X) and colnames(bg_X)", { expect_error(permshap(fit, iris, bg_X = cbind(iris, a = 1), feature_names = "a")) expect_error(permshap(fit, cbind(iris, a = 1), bg_X = iris, feature_names = "a")) }) fit <- lm(Sepal.Length ~ ., data = iris[1:4]) X <- data.matrix(iris[2:4]) pred_fun <- function(m, X) predict(m, as.data.frame(X)) preds <- unname(pred_fun(fit, X)) s <- permshap(fit, X[1:3, ], pred_fun = pred_fun, bg_X = X, verbose = FALSE) test_that("Matrix input is fine", { expect_true(is.kernelshap(s)) expect_equal(s$baseline, mean(iris$Sepal.Length)) expect_equal(rowSums(s$S) + s$baseline, preds[1:3]) }) test_that("Matrix input works if bg data containts extra columns", { ks5 <- permshap( fit, X[1:3, ], pred_fun = pred_fun, bg_X = cbind(d = 1, X), verbose = FALSE ) expect_true(is.kernelshap(ks5)) }) test_that("Matrix input gives error with inconsistent feature_names", { expect_error( permshap( fit, X[1:3, ], pred_fun = pred_fun, bg_X = X, verbose = FALSE, feature_names = "Sepal.Width" ) ) }) ## Now with case weights fit <- lm( Sepal.Length ~ poly(Petal.Width, degree = 2L) * Species, data = iris, weights = Petal.Length ) x <- c("Petal.Width", "Species") preds <- unname(predict(fit, iris)) s <- permshap( fit, iris[1:5, x], bg_X = iris, bg_w = iris$Petal.Length, verbose = FALSE ) test_that("Baseline equals weighted average prediction on background data", { expect_equal(s$baseline, weighted.mean(iris$Sepal.Length, iris$Petal.Length)) }) test_that("SHAP + baseline = prediction works with case weights", { expect_equal(rowSums(s$S) + s$baseline, preds[1:5]) }) test_that("Decomposing a single row works with case weights", { s <- permshap( fit, iris[1L, x], bg_X = iris, bg_w = iris$Petal.Length, verbose = FALSE ) expect_equal(s$baseline, weighted.mean(iris$Sepal.Length, iris$Petal.Length)) expect_equal(rowSums(s$S) + s$baseline, preds[1L]) }) fit <- lm( Sepal.Length ~ . , data = iris[c(1L, 3L, 4L)], weights = iris$Sepal.Width ) X <- data.matrix(iris[3:4]) preds <- unname(pred_fun(fit, X)) test_that("Matrix input is fine with case weights", { s <- permshap( fit, X[1:3, ], pred_fun = pred_fun, bg_X = X, bg_w = iris$Sepal.Width, verbose = FALSE ) expect_true(is.kernelshap(s)) expect_equal(s$baseline, weighted.mean(iris$Sepal.Length, iris$Sepal.Width)) expect_equal(rowSums(s$S) + s$baseline, preds[1:3]) }) test_that("On additive model, permshap and kernelshap give identical SHAP values", { fit <- lm( Sepal.Length ~ poly(Petal.Width, degree = 2L) + Species + Petal.Length, data = iris ) x <- c("Petal.Width", "Species", "Petal.Length") s1 <- permshap(fit, iris[c(1L, 51L, 101L), x], bg_X = iris, verbose = FALSE) s2 <- kernelshap(fit, iris[c(1L, 51L, 101L), x], bg_X = iris, verbose = FALSE) expect_equal(s1$S, s2$S) })