context("utils") test_call_succeeds("to_categorical", { runif(1000, min = 0, max = 9) %>% round() %>% matrix(nrow = 1000, ncol = 1) %>% to_categorical(num_classes = 10) }) # test_call_succeeds("get_file", { # # file moved. # get_file("im.jpg", # origin = "https://camo.githubusercontent.com/0d08dc4f9466d347e8d28a951ea51e3430c6f92c/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6b657261732e696f2f696d672f6b657261732d6c6f676f2d323031382d6c617267652d313230302e706e67", # cache_subdir = "tests") # }) test_call_succeeds("hdf5_matrix", { if (tensorflow::tf_version() >= "2.4") skip("hdf5 matrix have been removed in tf >= 2.4") if (!keras:::have_h5py()) skip("h5py not available for testing") X_train = hdf5_matrix('test.h5', 'my_data', start=0, end=150) y_train = hdf5_matrix('test.h5', 'my_labels', start=0, end=150) }) test_call_succeeds("normalize", { data <- runif(1000, min = 0, max = 9) %>% round() %>% matrix(nrow = 1000, ncol = 1) normalize(data) }) test_call_succeeds("with_custom_object_scope", { if (!keras:::have_h5py()) skip("h5py not available for testing") metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) { k_mean(y_pred) }) with_custom_object_scope(c(mean_pred = metric_mean_pred), { model <- define_model() model %>% compile( loss = "binary_crossentropy", optimizer = optimizer_nadam(), metrics = metric_mean_pred ) tmp <- tempfile("model", fileext = ".hdf5") save_model_hdf5(model, tmp) model <- load_model_hdf5(tmp) # https://github.com/tensorflow/tensorflow/issues/45903#issuecomment-804973541 # broken in tf 2.4 and 2.5, fixed in nightly already if (tf_version() == "2.5") model$compile(optimizer=model$optimizer, loss = "binary_crossentropy", metrics = metric_mean_pred) # generate dummy training data data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784) labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10) model %>% fit(data, labels, epochs = 2, verbose = 0) }) }) test_call_succeeds("with_custom_object_scope", { gradients <- list("grad_for_wt_1", "grad_for_wt_2", "grad_for_wt_3") weights <- list("weight_1", "weight_2", "weight_3") expect_identical(zip_lists(gradients, weights), list( list("grad_for_wt_1", "weight_1"), list("grad_for_wt_2", "weight_2"), list("grad_for_wt_3", "weight_3") )) expect_identical(zip_lists(gradient = gradients, weight = weights), list( list(gradient = "grad_for_wt_1", weight = "weight_1"), list(gradient = "grad_for_wt_2", weight = "weight_2"), list(gradient = "grad_for_wt_3", weight = "weight_3") )) names(gradients) <- names(weights) <- paste0("layer_", 1:3) expected <- list( layer_1 = list("grad_for_wt_1", "weight_1"), layer_2 = list("grad_for_wt_2", "weight_2"), layer_3 = list("grad_for_wt_3", "weight_3") ) expect_identical(zip_lists(gradients, weights), expected) expect_identical(zip_lists(gradients, weights[c(3, 1, 2)]), expected) expect_identical( zip_lists(gradient = gradients, weight = weights), list( layer_1 = list(gradient = "grad_for_wt_1", weight = "weight_1"), layer_2 = list(gradient = "grad_for_wt_2", weight = "weight_2"), layer_3 = list(gradient = "grad_for_wt_3", weight = "weight_3") ) ) names(gradients) <- paste0("gradient_", 1:3) expect_error(zip_lists(gradients, weights)) # error, names don't match # call unname directly for positional matching expect_identical(zip_lists(unname(gradients), unname(weights)), list( list("grad_for_wt_1", "weight_1"), list("grad_for_wt_2", "weight_2"), list("grad_for_wt_3", "weight_3") )) })