context("model-persistence") test_succeeds("model can be saved and loaded", { if (!keras3:::have_h5py()) skip("h5py not available for testing") model <- define_and_compile_model() tmp <- tempfile("model", fileext = ".hdf5") skip("save_model_hdf5") save_model_hdf5(model, tmp) model <- load_model_hdf5(tmp) }) test_succeeds("model with custom loss and metrics can be saved and loaded", { if (!keras3:::have_h5py()) skip("h5py not available for testing") model <- define_model() metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) { op_mean(y_pred) }) custom_loss <- function(y_pred, y_true) { loss_categorical_crossentropy(y_pred, y_true) } model %>% compile( loss = custom_loss, optimizer = optimizer_nadam(), metrics = metric_mean_pred ) tmp <- tempfile("model", fileext = ".keras") save_model(model, tmp) restored_model <- load_model(tmp, custom_objects = c(mean_pred = metric_mean_pred, custom_loss = custom_loss)) # generate dummy training data data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784) labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10) expect_equal( model %>% predict(data, verbose = 0), restored_model %>% predict(data, verbose = 0) ) model %>% fit(data, labels, epochs = 2, verbose = 0) expect_no_error({ restored_model %>% fit(data, labels, epochs = 2, verbose = 0) }) }) test_succeeds("model load with unnamed custom_objects", { layer_my_dense <- new_layer_class( "MyDense", initialize = function(units, ...) { super$initialize(...) private$units <- units self$dense <- layer_dense(units = units) }, # TODO: warning emitted from upstream if missing build method... # but this simple case should not need a build method build = function(input_shape) { self$dense$build(input_shape) }, call = function(x, ...) { # TODO: a call() method without any named args breaks shape inference # for tracing, symbolic builds, and auto-calling build() w/ the correct # input shape. Emit a warning from `new_layer_class()` if that happens? self$dense(x, ...) }, get_config = function() { config <- super$get_config() config$units <- private$units config } ) # l <- layer_my_dense(,10) # x <- random_array(3, 4) # l(random_array(3, 4)) model <- keras_model_sequential(input_shape = 32) %>% layer_dense(10) %>% layer_my_dense(10) %>% layer_dense(10) metric_mean_pred <- custom_metric("mean_pred", function(y_true, y_pred) { op_mean(y_pred) }) custom_loss <- function(y_pred, y_true) { loss_categorical_crossentropy(y_pred, y_true) } # TODO: # attr(custom_loss, "name") <- "custom_loss" # custom_loss <- py_func2(function(y_pred, y_true) { # loss_categorical_crossentropy(y_pred, y_true) # }, TRUE, name = "custom_loss") model %>% compile( loss = custom_loss, optimizer = optimizer_nadam(), metrics = metric_mean_pred ) # generate dummy training data data <- x <- random_normal(c(10, 32)) # y <- to_categorical(sample(0:9, 10, replace = TRUE)) y <- to_categorical(random_integer(10, 0, 10), 10) model %>% fit(x, y, verbose = FALSE) res1 <- as.array(model(data)) tmp <- tempfile("model", fileext = ".keras") if (is_windows()) skip("save_model() errors on Windows") # need to investigate next time on Windows " ── Failure ('test-model-persistence.R:128:3'): model load with unnamed custom_objects ── Expected `{ ... }` to run without any errors. ℹ Actually got a with text: SystemError: returned a result with an exception set Run `reticulate::py_last_error()` for details. [ FAIL 1 | WARN 0 | SKIP 40 | PASS 513 ]" save_model(model, tmp) model2 <- load_model(tmp, custom_objects = list( metric_mean_pred, layer_my_dense, custom_loss = custom_loss) ) res2 <- as.array(model2(data)) expect_identical(res1, res2) expect_no_error({ model2 %>% fit(x, y, verbose = 0) }) }) test_succeeds("model weights can be saved and loaded", { if (!keras3:::have_h5py()) skip("h5py not available for testing") model <- define_and_compile_model() tmp <- tempfile("model", fileext = ".hdf5") skip("save_model_weights_hdf5") save_model_weights_hdf5(model, tmp) load_model_weights_hdf5(model, tmp) }) test_succeeds("model can be saved and loaded from json", { model <- define_model() json_file <- tempfile("config-", fileext = ".json") save_model_config(model, json_file) model2 <- load_model_config(json_file) json_file2 <- tempfile("config-2-", fileext = ".json") save_model_config(model2, json_file2) expect_identical(jsonlite::read_json(json_file), jsonlite::read_json(json_file2)) config <- get_config(model) attributes(config) <- attributes(config)['names'] expect_identical(jsonlite::read_json(json_file)$config, config) }) ## patch releases removed ability to serialize to/from yaml in all the version ## going back to 2.2 # test_succeeds("model can be saved and loaded from yaml", { # # if (!keras3:::have_pyyaml()) # skip("yaml not available for testing") # # if(tf_version() >= "2.5.1") # skip("model$to_yaml() removed in 2.6") # # model <- define_model() # yaml <- model_to_yaml(model) # model_from <- model_from_yaml(yaml) # expect_equal(yaml, model_to_yaml(model_from)) # }) test_succeeds("model can be saved and loaded from R 'raw' object", { if (!keras3:::have_h5py()) skip("h5py not available for testing") model <- define_and_compile_model() skip("serialize_model") mdl_raw <- serialize_model(model) model <- unserialize_model(mdl_raw) }) test_succeeds("saved models/weights are mirrored in the run_dir", { skip("tfruns") run <- tfruns::training_run("train.R", echo = FALSE) run_dir <- run$run_dir expect_true(file.exists(file.path(run_dir, "model.h5"))) expect_true(file.exists(file.path(run_dir, "weights", "weights.h5"))) }) test_succeeds("callback output is redirected to run_dir", { skip("tfruns") run <- tfruns::training_run("train.R", echo = FALSE) run_dir <- run$run_dir if (is_backend("tensorflow")) expect_true(file_test("-d", file.path(run_dir, "tflogs"))) expect_true(file.exists(file.path(run_dir, "cbk_checkpoint.h5"))) expect_true(file.exists(file.path(run_dir, "cbk_history.csv"))) }) test_succeeds("model can be exported to TensorFlow", { if (!is_backend("tensorflow")) skip("not a tensorflow backend") model <- define_and_compile_model() model_dir <- tempfile() skip("tensorflow::export_savedmodel") export <- function() tensorflow::export_savedmodel(model, model_dir) export() model_files <- dir(model_dir, recursive = TRUE) expect_true(any(grepl("saved_model\\.pb", model_files))) }) test_succeeds("model can be exported to saved model format", { if (!is_backend("tensorflow")) skip("not a tensorflow backend") if (!tensorflow::tf_version() >= "1.14") skip("Needs TF >= 1.14") if (tensorflow::tf_version() > "2.0") skip("Is deprecated in TF 2.1") model <- define_and_compile_model() data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784) labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10) model %>% fit(data, labels, epochs = 2, verbose = 0) model_dir <- tempfile() dir.create(model_dir) if (tensorflow::tf_version() == "2.0") { expect_warning({ model_to_saved_model(model, model_dir) loaded <- model_from_saved_model(model_dir) }) } else { model_to_saved_model(model, model_dir) loaded <- model_from_saved_model(model_dir) } expect_equal( predict(model, matrix(rep(1, 784), nrow = 1)), predict(loaded, matrix(rep(1, 784), nrow = 1)) ) }) test_succeeds("model can be exported to saved model format using save_model_tf", { if (!is_backend("tensorflow")) skip("not a tensorflow backend") if (!tensorflow::tf_version() >= "2.0.0") skip("Needs TF >= 2.0") model <- define_and_compile_model() model_dir <- tempfile() skip("save_model_tf") s <- save_model_tf(model, model_dir) loaded <- load_model_tf(model_dir) expect_equal( predict(model, matrix(rep(1, 784), nrow = 1)), predict(loaded, matrix(rep(1, 784), nrow = 1)) ) })