context("layers-preprocessing") dataset_mnist_mini <- local({ mnist_mini <- NULL function() { if (is.null(mnist_mini)) { mnist <- dataset_mnist() mnist_mini <- list(x = mnist$test$x[1:50, ,] / 255, y = mnist$test$y[1:50]) dim(mnist_mini$x) <- c(dim(mnist_mini$x), 1) mnist_mini <<- mnist_mini } mnist_mini } }) peek_py_iterator <- function(x) { reticulate::iter_next(reticulate::as_iterator(x)) } test_image_preprocessing_layer <- function(lyr, ...) { if(is_mac_arm64()) local_tf_device("CPU") # workaround for bug on M1 Macs until this error is resolved: # No registered 'RngReadAndSkip' OpKernel for 'GPU' devices compatible with node {{node RngReadAndSkip}} # . Registered: device='XLA_CPU_JIT' # device='CPU' # [Op:RngReadAndSkip] test_succeeds(deparse(substitute(lyr)), { mnist_mini <- dataset_mnist_mini() # in a sequential model model <- keras_model_sequential(input_shape = shape(28, 28, 1)) %>% lyr(...) expect_tensor(model(mnist_mini$x)) # in a functional model lyr_inst <- lyr(...) input <- layer_input( shape(28, 28, 1)) output <- lyr_inst(input) model <- keras_model(input, output) expect_tensor(model(mnist_mini$x)) # in a dataset mnist_mini_ds <- tfdatasets::tensor_slices_dataset( list(tensorflow::as_tensor(mnist_mini$x, "float32"), mnist_mini$y)) layer <- lyr(...) ds <- mnist_mini_ds %>% tfdatasets::dataset_map(function(x, y) list(layer(x), y)) expect_tensor(iter_next(as_iterator(ds))[[1]]) }) } if(tf_version() >= "2.9") { test_image_preprocessing_layer(layer_random_brightness, factor = .2) } if (tf_version() >= "2.6") { # image preprocessing test_image_preprocessing_layer(layer_resizing, height = 20, width = 20) test_image_preprocessing_layer(layer_rescaling, scale = 1/255) test_image_preprocessing_layer(layer_center_crop, height = 20, width = 20) # image augmentation # lyr <- layer_random_crop test_image_preprocessing_layer(layer_random_crop, height = 20, width = 20) test_image_preprocessing_layer(layer_random_flip) test_image_preprocessing_layer(layer_random_translation, height_factor = .5, width_factor = .5) test_image_preprocessing_layer(layer_random_rotation, factor = .2) test_image_preprocessing_layer(layer_random_zoom, height_factor = .5) test_image_preprocessing_layer(layer_random_contrast, factor = .5) # test_image_preprocessing_layer(layer_random_height, factor = .5) # test_image_preprocessing_layer(layer_random_width, factor = .5) } if (tf_version() >= "2.6") test_succeeds("layer_category_encoding", { layer <- layer_category_encoding(num_tokens=4, output_mode="one_hot") inp <- as.integer(c(3, 2, 0, 1)) out <- layer(inp) expect_tensor(out, shape = c(4L, 4L)) layer <- layer_category_encoding(num_tokens=4, output_mode="multi_hot") inp <- rbind(c(0, 1), c(0, 0), c(1, 2), c(3, 1)) %>% as_tensor("int32") out <- layer(inp) expect_tensor(out, shape = c(4L, 4L)) layer <- layer_category_encoding(num_tokens=4, output_mode="count") inp <- rbind(c(0, 1), c(0, 0), c(1, 2), c(3, 1)) %>% as_tensor("int32") count_weights <- rbind(c(.1, .2), c(.1, .1), c(.2, .3), c(.4, .2)) skip("layer_category_encoding bug upstream - example errors") out <- layer(inp, count_weights = count_weights) expect_tensor(out, shape = c(4L, 4L)) }) if (tf_version() >= "2.6") test_succeeds("layer_hashing", { # **Example (FarmHash64)** layer <- layer_hashing(num_bins = 3) inp <- matrix(c('A', 'B', 'C', 'D', 'E')) expect_tensor(layer(inp), shape = c(5L, 1L)) # **Example (FarmHash64) with a mask value** layer <- layer_hashing(num_bins = 3, mask_value = '') inp <- matrix(c('A', 'B', 'C', 'D', 'E')) expect_tensor(layer(inp), shape = c(5L, 1L)) # **Example (SipHash64)** layer <- layer_hashing(num_bins = 3, salt = c(133, 137)) inp <- matrix(c('A', 'B', 'C', 'D', 'E')) expect_tensor(layer(inp), shape = c(5L, 1L)) # **Example (Siphash64 with a single integer, same as `salt=[133, 133]`)** layer <- layer_hashing(num_bins = 3, salt = 133) inp <- matrix(c('A', 'B', 'C', 'D', 'E')) expect_tensor(layer(inp), shape = c(5L, 1L)) }) if (tf_version() >= "2.6") test_succeeds("layer_integer_lookup", { #Creating a lookup layer with a known vocabulary vocab = as.integer(c(12, 36, 1138, 42)) data = as_tensor(rbind(c(12, 1138, 42), c(42, 1000, 36)), "int32") # Note OOV tokens layer = layer_integer_lookup(vocabulary = vocab) expect_tensor(layer(data), shape = c(2L, 3L)) # Creating a lookup layer with an adapted vocabulary data = as_tensor(rbind(c(12, 1138, 42), c(42, 1000, 36)), "int32") layer = layer_integer_lookup() vocab <- layer %>% adapt(data) %>% get_vocabulary() expect_equal(vocab, list(-1L, 42L, 1138L, 1000L, 36L, 12L)) out <- layer(data) expect_tensor(out, shape = c(2L, 3L)) expect_equal(as.array(out), rbind(c(5, 2, 1), c(1, 3, 4))) # Lookups with multiple OOV indices vocab = as.integer(c(12, 36, 1138, 42)) data = as_tensor(rbind(c(12, 1138, 42), c(37, 1000, 36)), "int32") layer = layer_integer_lookup(vocabulary=vocab, num_oov_indices=2) layer(data) expect_tensor(layer(data), shape = c(2L, 3L)) # One-hot output vocab = as.integer(c(12, 36, 1138, 42)) data = as.integer(c(12, 36, 1138, 42, 7)) # Note OOV tokens layer = layer_integer_lookup(vocabulary = vocab, output_mode = 'one_hot') expect_tensor(layer(data), shape = c(5L, 5L)) }) if (tf_version() >= "2.6") test_succeeds("layer_string_lookup", { #Creating a lookup layer with a known vocabulary vocab = c("a", "b", "c", "d") data = as_tensor(rbind(c("a", "c", "d"), c("d", "z", "b"))) # Note OOV tokens layer = layer_string_lookup(vocabulary = vocab) expect_tensor(layer(data), shape = c(2L, 3L)) # Creating a lookup layer with an adapted vocabulary data = as_tensor(rbind(c("a", "c", "d"), c("d", "z", "b"))) # Note OOV tokens layer = layer_string_lookup() vocab <- layer %>% adapt(data) %>% get_vocabulary() expect_equal(vocab, c("[UNK]", "d", "z", "c", "b", "a")) out <- layer(data) expect_tensor(out, shape = c(2L, 3L)) expect_equal(as.array(out), rbind(c(5, 3, 1), c(1, 2, 4))) }) if (tf_version() >= "2.6") test_succeeds("layer_normalization", { #Calculate a global mean and variance by analyzing the dataset in adapt(). adapt_data = keras_array(c(1, 2, 3, 4, 5)) input_data = keras_array(c(1, 2, 3)) layer = layer_normalization(axis=NULL) layer %>% adapt(adapt_data) out <- layer(input_data) expect_tensor(out, shape = c(3L)) expect_equal(as.numeric(out), c(-1.41421353816986, -0.70710676908493, 0), tolerance = 1e-7) # Calculate a mean and variance for each index on the last axis. adapt_data = rbind(c(0, 7, 4), c(2, 9, 6), c(0, 7, 4), c(2, 9, 6)) input_data = adapt_data[1:2,] input_data = rbind(c(0, 7, 4)) layer = layer_normalization(axis=-1) layer %>% adapt(as_tensor(adapt_data)) out <- layer(input_data) expect_tensor(out, shape = c(1L, 3L)) out <- as.array(out) mean <- as.array(layer$mean) var <- as.array(layer$variance) expect_equal(mean, rbind(c(1,8,5))) expect_equal(var, rbind(c(1,1,1))) out_manual <- as.array(input_data - mean / sqrt(var)) expect_equal(out, out_manual) expect_equal(as.vector(out), c(-1, -1, -1)) # Pass the mean and variance directly. input_data = as_tensor(rbind(1, 2, 3), "float32") layer = layer_normalization(mean=3, variance=2) out <- layer(input_data) expect_tensor(out, shape = c(3L, 1L)) expect_equal(as.array(out), rbind(-1.41421353816986, -0.70710676908493, 0), tolerance = 1e-7) # adapt multiple times in a model layer = layer_normalization(axis=NULL) layer %>% adapt(c(0, 2)) model = keras_model_sequential(layers = layer) out <- model %>% predict(c(0, 1, 2)) expect_equal(out, array(c(-1, 0, 1))) layer %>% adapt(c(-1, 1)) model %>% compile() # This is needed to re-compile model.predict! out <- model %>% predict(c(0, 1, 2)) expect_equal(out, array(c(0, 1, 2))) # adapt multiple times in a dataset layer = layer_normalization(axis=NULL) layer %>% adapt(c(0, 2)) input_ds = tfdatasets::range_dataset(0, 3) normalized_ds = tfdatasets::dataset_map(input_ds, layer) out <- iterate(normalized_ds$as_numpy_iterator()) expect_equal(out, list(array(-1), array(0), array(1))) layer %>% adapt(c(-1, 1)) normalized_ds = tfdatasets::dataset_map(input_ds, layer) # Re-map over the input dataset. out <- iterate(normalized_ds$as_numpy_iterator()) expect_equal(out, list(array(0), array(1), array(2))) }) if (tf_version() >= "2.6") test_succeeds("layer_discretization", { input = rbind(c(-1.5, 1.0, 3.4, .5), c(0.0, 3.0, 1.3, 0.0)) layer = layer_discretization(bin_boundaries = c(0, 1, 2)) out <- layer(input) expect_tensor(out, shape = c(2L, 4L)) expect_true(out$dtype$is_integer) expect_equal(as.array(out), rbind(c(0, 2, 3, 1), c(1, 3, 2, 1))) layer = layer_discretization(num_bins = 4, epsilon = 0.01) layer %>% adapt(input) out <- layer(input) expect_tensor(out, shape = c(2L, 4L)) expect_true(out$dtype$is_integer) expect_equal(as.array(out), rbind(c(0, 2, 3, 2), c(1, 3, 3, 1))) }) test_succeeds("layer_text_vectorization", { text_dataset = tfdatasets::tensor_slices_dataset(c("foo", "bar", "baz")) vectorize_layer = layer_text_vectorization( max_tokens = 5000, output_mode = 'int', output_sequence_length = 4 ) vectorize_layer %>% adapt(tfdatasets::dataset_batch(text_dataset, 64)) model <- keras_model_sequential( layers = vectorize_layer, input_shape = c(1), dtype = tf$string) input_data = rbind("foo qux bar", "qux baz") preds <- model %>% predict(input_data) expect_equal(preds, rbind(c(2, 1, 4, 0), c(1, 3, 0, 0))) vocab_data = c("earth", "wind", "and", "fire") max_len = 4 # Sequence length to pad the outputs to. if(tf_version() >= "2.4") { # setting vocab on instantiation not supported prior to 2.4, missing kwarg 'vocabulary' vectorize_layer = layer_text_vectorization( max_tokens = 5000, output_mode = 'int', output_sequence_length = 4, vocabulary = vocab_data ) vocab <- get_vocabulary(vectorize_layer) expect_equal(vocab, c("", "[UNK]", "earth", "wind", "and", "fire")) } })