test_that("Gam distr works", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) # Types expect_s4_class(D, "Distribution") expect_s4_class(D, "Gam") # Errors expect_error(Gam(c(0.1, 0.2, 0.3))) expect_error(Gam(-1, 2)) expect_error(Gam(1, -2)) }) test_that("Gam dpqr work", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.function(d(D))) expect_true(is.function(p(D))) expect_true(is.function(qn(D))) expect_true(is.function(r(D))) # Values expect_equal(d(D)(0), 0) expect_equal(p(D)(Inf), 1) expect_equal(p(D)(0), 0) expect_equal(qn(D)(1), Inf) expect_equal(qn(D)(0), 0) expect_equal(sum(x >= 0), n) # 2-Way Calls expect_equal(d(D)(0.4), dgamma(0.4, shape = a, scale = b)) expect_equal(p(D)(0.4), pgamma(0.4, shape = a, scale = b)) expect_equal(qn(D)(0.4), qgamma(0.4, shape = a, scale = b), tolerance = 1e-8) expect_equal(d(D)(0.4), d(D, 0.4)) expect_equal(p(D)(0.4), p(D, 0.4)) expect_equal(qn(D)(0.4), qn(D, 0.4)) }) test_that("Gam moments work", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) # Types expect_true(is.list(moments(D))) expect_true(is.numeric(mean(D))) expect_true(is.numeric(median(D))) expect_true(is.numeric(mode(D))) expect_true(is.numeric(var(D))) expect_true(is.numeric(sd(D))) expect_true(is.numeric(skew(D))) expect_true(is.numeric(kurt(D))) expect_true(is.numeric(entro(D))) expect_true(is.numeric(finf(D))) # Values expect_equal(mode(Gam(0.5, 1)), 0) }) test_that("Gam likelihood works", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.numeric(llgamma(x, shape = a, scale = b))) # 2-Way Calls expect_equal(llgamma(x, shape = a, scale = b), ll(D, x)) expect_equal(ll(D)(x), ll(D, x)) # ll and lloptim convergence to a0 comparison method <- "L-BFGS-B" lower <- 1e-5 upper <- Inf tx <- c(log(mean(x)), mean(log(x))) par1 <- optim(par = sum(unlist(same(D, x))), fn = lloptim, gr = dlloptim, tx = tx, distr = D, method = method, lower = lower, upper = upper, control = list(fnscale = -1))$par par2 <- optim(par = unlist(same(D, x)), fn = function(par, x, distr) { ll(Gam(par[1], par[2]), x) }, x = x, method = method, lower = lower, upper = upper, control = list(fnscale = -1))$par expect_equal(c(shape = par1, scale = mean(x) / par1), par2, tolerance = 0.01) }) test_that("Gam estim works", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.list(egamma(x, type = "mle"))) expect_true(is.list(egamma(x, type = "me"))) expect_true(is.list(egamma(x, type = "same"))) # 2-Way Calls expect_equal(egamma(x, type = "mle"), e(D, x, type = "mle")) expect_equal(egamma(x, type = "me"), e(D, x, type = "me")) expect_equal(egamma(x, type = "same"), e(D, x, type = "same")) skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Simulations d <- test_consistency("me", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.05) d <- test_consistency("mle", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.05) d <- test_consistency("same", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.05) # Errors expect_error(e(D, x, type = "xxx")) expect_error(e(D, x, type = "mle", par0 = "xxx")) }) test_that("Gam avar works", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) # Types expect_true(is.numeric(vgamma(a, b, type = "mle"))) expect_true(is.numeric(vgamma(a, b, type = "me"))) expect_true(is.numeric(vgamma(a, b, type = "same"))) # 2-Way Calls expect_equal(vgamma(a, b, type = "mle"), v(D, type = "mle")) expect_equal(vgamma(a, b, type = "me"), v(D, type = "me")) expect_equal(vgamma(a, b, type = "same"), v(D, type = "same")) expect_equal(vgamma(a, b, type = "mle"), avar_mle(D)) expect_equal(vgamma(a, b, type = "me"), avar_me(D)) expect_equal(vgamma(a, b, type = "same"), avar_same(D)) skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Simulations d <- test_avar("mle", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.07) d <- test_avar("me", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.05) d <- test_avar("same", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.07) # Errors expect_error(v(D, type = "xxx")) }) test_that("Gam small metrics work", { skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) set.seed(1) prm <- list(name = "shape", val = seq(0.5, 5, by = 0.5)) expect_no_error( x <- small_metrics(D, prm, est = c("mle", "me", "same"), obs = c(20, 50), sam = 1e2, seed = 1, bar = FALSE) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "SmallMetrics") }) test_that("Gam large metrics work", { # Preliminaries a <- 2 b <- 3 D <- Gam(a, b) set.seed(1) prm <- list(name = "shape", val = seq(0.5, 5, by = 0.5)) expect_no_error( x <- large_metrics(D, prm, est = c("mle", "me", "same")) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "LargeMetrics") prm <- list(name = "scale", val = seq(0.5, 5, by = 0.5)) expect_no_error( x <- large_metrics(D, prm, est = c("mle", "me", "same")) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "LargeMetrics") })