test_that("Pois distr works", { # Preliminaries lambda <- 3 D <- Pois(lambda) # Types expect_s4_class(D, "Distribution") expect_s4_class(D, "Pois") # Errors expect_error(Pois(1:2)) expect_error(Pois(-1)) }) test_that("Pois dpqr work", { # Preliminaries lambda <- 3 D <- Pois(lambda) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.function(d(D))) expect_true(is.function(p(D))) expect_true(is.function(qn(D))) expect_true(is.function(r(D))) # Values expect_equal(d(D)(-1), 0) expect_warning(d(D)(1.5)) expect_equal(p(D)(-1), 0) expect_equal(p(D)(Inf), 1) expect_equal(qn(D)(1), Inf) expect_equal(qn(D)(0), 0) expect_equal(sum(r(D)(n) >= 0), n) # 2-Way Calls expect_equal(d(D)(1), dpois(1, lambda)) expect_equal(p(D)(1), ppois(1, lambda)) expect_equal(qn(D)(0.5), qpois(0.5, lambda), tolerance = 0.01) expect_equal(d(D)(1), d(D, 1)) expect_equal(p(D)(1), p(D, 1)) expect_equal(qn(D)(0.5), qn(D, 0.5), tolerance = 0.01) }) test_that("Pois moments work", { # Preliminaries lambda <- 3 D <- Pois(lambda) # Types expect_true(is.numeric(mean(D))) expect_warning(median(D)) expect_true(is.numeric(mode(D))) expect_true(is.numeric(var(D))) expect_true(is.numeric(sd(D))) expect_true(is.numeric(skew(D))) expect_true(is.numeric(kurt(D))) expect_warning(entro(D)) expect_true(is.numeric(finf(D))) }) test_that("Pois likelihood works", { # Preliminaries lambda <- 3 D <- Pois(lambda) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.numeric(llpois(x, lambda))) # 2-Way Calls expect_equal(llpois(x, lambda), ll(D, x)) expect_equal(ll(D)(x), ll(D, x)) }) test_that("Pois estim works", { # Preliminaries lambda <- 3 D <- Pois(lambda) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.list(epois(x, type = "mle"))) expect_true(is.list(epois(x, type = "me"))) # 2-Way Calls expect_equal(epois(x, type = "mle"), e(D, x, type = "mle")) expect_equal(epois(x, type = "me"), e(D, x, type = "me")) skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Simulations d <- test_consistency("me", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.01) d <- test_consistency("mle", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.01) # Errors expect_error(e(D, x, type = "xxx")) }) test_that("Pois avar works", { # Preliminaries lambda <- 3 D <- Pois(lambda) # Types expect_true(is.numeric(vpois(lambda, type = "mle"))) expect_true(is.numeric(vpois(lambda, type = "me"))) # 2-Way Calls expect_equal(vpois(lambda, type = "mle"), v(D, type = "mle")) expect_equal(vpois(lambda, type = "me"), v(D, type = "me")) expect_equal(vpois(lambda, type = "mle"), avar_mle(D)) expect_equal(vpois(lambda, type = "me"), avar_me(D)) skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Simulations d <- test_avar("mle", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.05) d <- test_avar("me", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.05) # Errors expect_error(v(D, type = "xxx")) }) test_that("Pois small metrics work", { skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Preliminaries lambda <- 3 D <- Pois(lambda) set.seed(1) prm <- list(name = "lambda", val = seq(0.5, 5, by = 0.5)) expect_no_error( x <- small_metrics(D, prm, est = c("mle", "me"), obs = c(20, 50), sam = 1e2, seed = 1, bar = FALSE) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "SmallMetrics") }) test_that("Pois large metrics work", { # Preliminaries lambda <- 3 D <- Pois(lambda) prm <- list(name = "lambda", val = seq(0.5, 5, by = 0.5)) expect_no_error( x <- large_metrics(D, prm, est = c("mle", "me")) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "LargeMetrics") })