test_that("Nbinom distr works", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) # Types expect_s4_class(D, "Distribution") expect_s4_class(D, "Nbinom") # Errors expect_error(Nbinom(-10, 0.5)) expect_error(Nbinom(0, 0.5)) expect_error(Nbinom(10, 5)) expect_error(Nbinom(3:4, 0.5)) expect_error(Nbinom(10, c(0.5, 0.6))) }) test_that("Nbinom dpqr work", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.function(d(D))) expect_true(is.function(p(D))) expect_true(is.function(qn(D))) expect_true(is.function(r(D))) # Values expect_equal(d(D)(0), p ^ k, tolerance = 0.01) expect_equal(d(D)(1), k * (1 - p) * p ^ k, tolerance = 0.01) expect_equal(p(D)(-1), 0) expect_equal(qn(D)(1), Inf) expect_equal(qn(D)(0), 0) expect_equal(sum(x >= 0), n) # 2-Way Calls expect_equal(d(D)(1), dnbinom(1, k, p)) expect_equal(p(D)(1), pnbinom(1, k, p)) expect_equal(qn(D)(1), qnbinom(1, k, p)) expect_equal(qn(D)(0), qnbinom(0, k, p)) expect_equal(d(D)(1), d(D, 1)) expect_equal(p(D)(1), p(D, 1)) expect_equal(qn(D)(1), qn(D, 1)) expect_equal(qn(D)(0), qn(D, 0)) # Special Case: Geom D1 <- Nbinom(1, 0.7) D2 <- Geom(0.7) expect_equal(d(D1)(3), d(D2)(3), tolerance = 0.01) expect_equal(p(D1)(3), p(D2)(3), tolerance = 0.01) expect_equal(qn(D1)(0.7), qn(D2)(0.7), tolerance = 0.01) }) test_that("Nbinom moments work", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) # Types expect_true(is.numeric(mean(D))) expect_true(is.numeric(median(D))) expect_true(is.numeric(mode(D))) expect_true(is.numeric(var(D))) expect_true(is.numeric(sd(D))) expect_true(is.numeric(skew(D))) expect_true(is.numeric(kurt(D))) expect_true(is.numeric(entro(D))) expect_true(is.numeric(finf(D))) # Values expect_equal(mean(D), k * (1 / p - 1), tolerance = 0.01) }) test_that("Nbinom likelihood works", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.numeric(llnbinom(x, size = k, prob = p))) # 2-Way Calls expect_equal(llnbinom(x, k, p), ll(D, x)) expect_equal(ll(D)(x), ll(D, x)) }) test_that("Nbinom estim works", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.list(enbinom(x, k, type = "mle"))) expect_true(is.list(enbinom(x, k, type = "me"))) # 2-Way Calls expect_equal(enbinom(x, k, type = "mle"), e(D, x, type = "mle")) expect_equal(enbinom(x, k, type = "me"), e(D, x, type = "me")) skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Simulations d <- test_consistency("me", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.01) d <- test_consistency("mle", D) expect_equal(d$prm_true, d$prm_est, tolerance = 0.02) # Errors expect_error(e(D, x, type = "xxx")) }) test_that("Nbinom avar works", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) set.seed(1) n <- 100L x <- r(D)(n) # Types expect_true(is.numeric(vnbinom(k, p, type = "mle"))) expect_true(is.numeric(vnbinom(k, p, type = "me"))) # 2-Way Calls expect_equal(vnbinom(k, p, type = "mle"), v(D, type = "mle")) expect_equal(vnbinom(k, p, type = "me"), v(D, type = "me")) expect_equal(vnbinom(k, p, type = "mle"), avar_mle(D)) expect_equal(vnbinom(k, p, type = "me"), avar_me(D)) skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Simulations d <- test_avar("mle", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.1) d <- test_avar("me", D) expect_equal(d$avar_true, d$avar_est, tolerance = 0.1) # Errors expect_error(v(D, type = "xxx")) }) test_that("Nbinom small metrics work", { skip_if(Sys.getenv("JOKER_EXTENDED_TESTS") != "true", "Skipping extended test unless JOKER_EXTENDED_TESTS='true'") # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) set.seed(1) prm <- list(name = "prob", val = seq(0.5, 0.8, by = 0.1)) expect_no_error( x <- small_metrics(D, prm, est = c("mle", "me"), obs = c(20, 50), sam = 1e2, seed = 1, bar = FALSE) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "SmallMetrics") }) test_that("Nbinom large metrics work", { # Preliminaries k <- 3 p <- 0.7 D <- Nbinom(k, p) set.seed(1) prm <- list(name = "prob", val = seq(0.5, 0.8, by = 0.1)) expect_no_error( x <- large_metrics(D, prm, est = c("mle", "me")) ) expect_no_error( plot(x, save = TRUE, path = tempdir()) ) # Types expect_s4_class(x, "LargeMetrics") })