test_that("Neville theta values", { expect_equal(theta.c(2.5, m = 0.3), as.complex(-0.65900466676738154967)) expect_equal(theta.d(2.5, m = 0.3), as.complex(0.95182196661267561994)) expect_equal(theta.n(2.5, m = 0.3), as.complex(1.0526693354651613637)) expect_equal(theta.s(2.5, m = 0.3), as.complex(0.82086879524530400536)) }) test_that("Neville theta values involving the nome", { m <- -2 + 3i actual <- theta.c(1i*Carlson::elliptic_F(pi/2, 1-m), m = m) expected <- 1 / (m^0.25 * nome(m)^0.25) expect_equal(actual, expected) # actual <- theta.s( Carlson::elliptic_F(pi/2, m) + 1i*Carlson::elliptic_F(pi/2, 1-m), m = m ) expected <- 1 / ((1-m)^0.25 * m^0.25 * nome(m)^0.25) expect_equal(actual, expected) })