#context("test-hidden") # Data simulation #= Number of sites nsite <- 50 #= Number of species nsp <- 5 #= Set seed for repeatability seed <- 1234 #= Number of visits associated to each site set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 #= Number of latent variables n_latent <- 2 form.Tr <- function(trait_formula, trait_data,X){ data <- trait_data # add column of 1 with names of covariables in site_data data[,colnames(X)] <- 1 mf.suit.tr <- model.frame(formula=trait_formula, data=data) # full design matrix corresponding to formula mod.mat <- model.matrix(attr(mf.suit.tr,"terms"), data=mf.suit.tr) # Remove duplicated columns to get design matrix for traits Tr <- as.matrix(mod.mat[,!duplicated(mod.mat,MARGIN=2)]) colnames(Tr) <- colnames(mod.mat)[!duplicated(mod.mat,MARGIN=2)] # Rename columns according to considered trait for(p in 1:np){ if(sum(colnames(Tr)==colnames(X)[p])==0){ colnames(Tr) <- gsub(pattern=paste0(":",colnames(X)[p]), replacement="", x=colnames(Tr), fixed=TRUE) colnames(Tr) <- gsub(pattern=paste0(colnames(X)[p],":"), replacement="", x=colnames(Tr), fixed=TRUE) } } nt <- ncol(Tr) n_Tint <- sum(sapply(apply(Tr,2,unique), FUN=function(x){all(x==1)})) col_Tint <- which(sapply(apply(Tr,2,unique), FUN=function(x){all(x==1)})) gamma_zeros <- matrix(0,nt,np) rownames(gamma_zeros) <- colnames(Tr) colnames(gamma_zeros) <- colnames(X) for(t in 1:nt){ for(p in 1:np){ term <- c(grep(paste0(colnames(X)[p],":"), colnames(mod.mat), value=TRUE, fixed=TRUE),grep(paste0(":",colnames(X)[p]), colnames(mod.mat), value=TRUE, fixed=TRUE)) if(length(term)==0) next # fixed=TRUE pattern is a string to be matched as is # not a regular expression because of special characters in formula (^, /, [, ...) gamma_zeros[t,p] <- length(c(grep(paste0(":",colnames(Tr)[t]), term, fixed=TRUE),grep(paste0(colnames(Tr)[t],":"), term, fixed=TRUE))) } gamma_zeros[t,1] <- length(which(colnames(mod.mat)==colnames(Tr)[t])) } gamma_zeros[col_Tint,] <- 1 return(list(gamma_zeros=gamma_zeros,Tr=Tr)) } # Ecological process (suitability) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) colnames(X) <- c("Int", "x1", "x2") np <- ncol(X) trait_data <- data.frame(WSD=scale(runif(nsp,0,1000)), SLA=scale(runif(nsp,0,250))) trait_formula <- ~ WSD + SLA + x1:I(WSD^2) + I(x1^2):SLA + x2:I(SLA^2) + I(x2^2):WSD result <- form.Tr(trait_formula,trait_data,X) Tr <- result$Tr nt <- ncol(Tr) gamma_zeros <- result$gamma_zeros gamma.target <- matrix(runif(nt*np,-2,2), byrow=TRUE, nrow=nt) #= Species effect beta mu_beta <- as.matrix(Tr) %*% (gamma.target*gamma_zeros) V_beta <- diag(1,np) beta.target <- matrix(NA,nrow=np,ncol=nsp) for(j in 1:nsp){ beta.target[,j] <- MASS::mvrnorm(n=1, mu=mu_beta[j,], Sigma=V_beta) } #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -2, 2), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] #= site effect alpha Valpha.target <- 0.5 alpha.target <- rnorm(nsite,0,sqrt(Valpha.target)) #### Poisson ############ log.theta <- X %*% beta.target + W%*%lambda.target + alpha.target theta <- exp(log.theta) set.seed(seed) Y.pois <- apply(theta, 2, rpois, n=nsite) #### Binomial #### #= Number of visits associated to each site visits <- rpois(nsite,3) visits[visits==0] <- 1 logit.theta <- X %*% beta.target + W%*%lambda.target + alpha.target theta <- jSDM::inv_logit(logit.theta) set.seed(seed) Y.bin <- apply(theta, 2, rbinom, n=nsite, size=visits) #### Binomial long format # Ecological process (suitability) ## X x1 <- rnorm(nsite,0,1) x1.2 <- scale(x1^2) X <- cbind(rep(1,nsite),x1,x1.2) colnames(X) <- c("Int","x1","x1.2") np <- ncol(X) ## W W <- matrix(rnorm(nsite*n_latent,0,1),nrow=nsite,byrow=TRUE) ## D SLA <- runif(nsp,-1,1) D <- data.frame(x1.SLA= scale(c(x1 %*% t(SLA)))) nd <- ncol(D) ## parameters beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) mat <- t(matrix(runif(nsp*n_latent,-2,2), byrow=TRUE, nrow=nsp)) diag(mat) <- runif(n_latent,0,2) lambda.target <- matrix(0,n_latent,nsp) gamma.target <-runif(nd,-1,1) # constraints of identifiability beta.target[,1] <- 0.0 lambda.target[upper.tri(mat,diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) ## probit_theta probit_theta <- c(X %*% beta.target) + c(W %*% lambda.target) + as.matrix(D) %*% gamma.target + rep(alpha.target,nsp) # Supplementary observation (each site have been visited twice) # Environmental variables at the time of the second visit x1_supObs <- rnorm(nsite,0,1) x1.2_supObs <- scale(x1^2) X_supObs <- cbind(rep(1,nsite),x1_supObs,x1.2_supObs) D_supObs <- data.frame(x1.SLA=scale(c(x1_supObs %*% t(SLA)))) probit_theta_supObs <- c(X_supObs%*%beta.target) + c(W%*%lambda.target) + as.matrix(D_supObs) %*% gamma.target + alpha.target probit_theta <- c(probit_theta, probit_theta_supObs) nobs <- length(probit_theta) e <- rnorm(nobs,0,1) Z_true <- probit_theta + e Y<-rep(0,nobs) for (n in 1:nobs){ if ( Z_true[n] > 0) {Y[n] <- 1} } Id_site <- rep(1:nsite,nsp) Id_sp <- rep(1:nsp,each=nsite) data <- data.frame(site=rep(Id_site,2), species=rep(Id_sp,2), Y=Y, x1=c(rep(x1,nsp),rep(x1_supObs,nsp)), x1.2=c(rep(x1.2,nsp),rep(x1.2_supObs,nsp)), x1.SLA=c(D$x1.SLA,D_supObs$x1.SLA)) # missing observation data <- data[-1,] nobs <- nobs-1 lambda_start <- matrix(1, n_latent, nsp) lambda_start[lower.tri(lambda_start)] <- 0 test_that("checks works", { expect_equal(check.mcmc.parameters(1000, 1000, 1), 0) expect_equal(check.verbose(1), 0) expect_equal(check.verbose(0), 0) expect_equal(check.Y.poisson(Y.pois), 0) expect_equal(check.Y.binomial(Y.bin, N=visits), 0) expect_equal(check.N.binomial(visits, nsite), 0) expect_equal(check.X(X, nsite), 0) expect_equal(form.beta.start(0,np), rep(0,np)) expect_equal(form.beta.start(rep(0,np),np), rep(0,np)) expect_equal(form.beta.start.sp(0, np, nsp), matrix(0, np, nsp)) expect_equal(form.lambda.start.sp(0, n_latent, nsp), diag(1, n_latent, nsp)) expect_equal(form.lambda.start.sp(1, n_latent, nsp), lambda_start) expect_equal(form.W.start.sp(0, nsite, n_latent), matrix(0, nsite, n_latent)) expect_equal(form.alpha.start.sp(0, nsite), rep(0, nsite)) expect_equal(form.b.start(0, nd), rep(0, nd)) expect_equal(form.gamma.start.mat(0, np, nt), matrix(0, np, nt)) expect_equal(check.mub(0, nd), rep(0, nd)) expect_equal(check.Vb.mat(1, nd), diag(rep(1,nd))) expect_equal(check.Vb.mat(matrix(1,nd,nd), nd), matrix(1,nd, nd)) expect_equal(check.mugamma.mat(0, nt, np), matrix(0, nt, np)) expect_equal(check.Vgamma.mat(1, nt, np), matrix(1, nt, np)) expect_equal(check.Vgamma.mat(1:nt, nt, np), matrix(1:nt, nt, np)) expect_equal(check.Vgamma.mat(1:np, nt, np), matrix(1:np, nt, np, byrow=TRUE)) expect_equal(check.Vgamma.mat(matrix(1:(np*nt), nt, np), nt, np), matrix(1:(np*nt), nt, np)) expect_equal(check.Valpha(1), 1) expect_equal(check.Vlambda(1, n_latent), rep(1,n_latent)) expect_equal(check.Vlambda(rep(1,n_latent), n_latent), rep(1,n_latent)) expect_equal(check.mulambda(0, n_latent), rep(0, n_latent)) expect_equal(check.mulambda(rep(0,n_latent), n_latent), rep(0,n_latent)) expect_equal(check.Vbeta(1, np), rep(1,np)) expect_equal(check.Vbeta(rep(1,np), np), rep(1,np)) expect_equal(check.mubeta(0, np), rep(0, np)) expect_equal(check.mubeta(rep(0,np), np), rep(0, np)) expect_equal(check.Vbeta.mat(1,np), diag(rep(1,np))) expect_equal(check.Vbeta.mat(rep(1,np),np), diag(rep(1,np))) expect_equal(check.Vbeta.mat(diag(rep(1,np)),np), diag(rep(1,np))) expect_equal(check.Vlambda.mat(1, n_latent), diag(rep(1,n_latent))) expect_equal(check.Vlambda.mat(rep(1, n_latent), n_latent), diag(rep(1, n_latent))) expect_equal(check.Vlambda.mat(diag(rep(1, n_latent)), n_latent), diag(rep(1, n_latent))) })