library(intamap) # set up data: data(meuse) coordinates(meuse) = ~x+y meuse$value = log(meuse$zinc) data(meuse.grid) gridded(meuse.grid) = ~x+y proj4string(meuse) = CRS("+init=epsg:28992") proj4string(meuse.grid) = CRS("+init=epsg:28992") set.seed(13531) mgrid = coarsenGrid(meuse.grid,4) # set up intamap object: obj = createIntamapObject( observations = meuse, predictionLocations = mgrid, targetCRS = "+init=epsg:3035", params = list(predictType=list(quantiles=c(0.05,0.5,0.95)),thresh=c(5.5,6.6)), outputWhat = list(mean = 1, variance = 1, quantile = 0.05, quantile = 0.5, quantile = 0.95, excprob = 5.5, excprob = 6.6, cumdistr = 5.5, cumdistr = 6.6, cumdistr = 7.9) ) class(obj) = "linearVariogram" # check: checkSetup(obj) # do interpolation steps: obj = preProcess(obj) obj = estimateParameters(obj) obj = spatialPredict(obj) obj = postProcess(obj) output = obj$predictions # generate some output: summary(obj$predictions) gridded(output) = FALSE summary(output)