library(intamap) # observations = Something from Java... # Until then we use the Meuse data: data(meuse) observations = data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc)) # If you send a field just with 3 columns (x,y & z), we can let R figure # out itself which names they have, for creation of a spatial object: obsNames = names(observations) coordinates(observations) = as.formula(paste("~",obsNames[1], "+", obsNames[2])) set.seed(13531) predictionLocations = spsample(observations, 50, "regular") proj4string(observations) <- CRS("+proj=stere +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.999908 +x_0=155000 +y_0=463000 +ellps=bessel +units=m") proj4string(predictionLocations) <- CRS("+proj=stere +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.999908 +x_0=155000 +y_0=463000 +ellps=bessel +units=m") # We dont know the projection of the data at this stage, assume it is # somehow metric krigingObject = createIntamapObject( observations = observations, predictionLocations = predictionLocations, targetCRS = "+init=epsg:3035", # boundCRS = "+proj=laea +lat_0=48 +lon_0=9 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m", # boundCRS = boundCRS, # boundaries = boundaries, formulaString = as.formula(paste(obsNames[3],"~1")), params = list(confProj = TRUE, thresh = quantile(observations$value,0.9)), outputWhat = list(mean=TRUE, variance=TRUE, excprob = 5.9, cumdistr = 5.9, quantile = .1), class = "automap" ) checkSetup(krigingObject) krigingObject = preProcess(krigingObject) krigingObject = estimateParameters(krigingObject) krigingObject = spatialPredict(krigingObject) krigingObject = postProcess(krigingObject) summary(krigingObject$outputTable)