library(intamap) data(meuse) coordinates(meuse) = ~x+y data(meuse.grid) coordinates(meuse.grid) = ~x+y set.seed(13531) predictionLocations = spsample(meuse,50,"regular") gridded(predictionLocations) = TRUE cs = predictionLocations@grid@cellsize[1]/2 meuse$value = log(meuse$zinc) outputWhat = list(mean=TRUE,variance=TRUE,quantile=0.025,quantile=0.0975) res1 = interpolateBlock(meuse,predictionLocations,outputWhat,methodName = "automap")$outputTable summary(t(res1)) Srl = list() for (i in 1:dim(coordinates(predictionLocations))[1]) { pt1 = coordinates(predictionLocations)[i,] x1 = pt1[1]-cs x2 = pt1[1]+cs y1 = pt1[2]-cs y2 = pt1[2]+cs boun = data.frame(x=c(x1,x2,x2,x1,x1),y=c(y1,y1,y2,y2,y1)) coordinates(boun) = ~x+y boun = Polygon(boun) Srl[[i]] = Polygons(list(boun),ID = as.character(i)) } predictionLocations = SpatialPolygons(Srl) res2 = interpolateBlock(meuse,predictionLocations,outputWhat,methodName="automap")$outputTable summary(t(res2)) max((res2-res1)/res1)