options(error = recover) set.seed(15331) library(intamap) library(automap) library(gstat) library(psgp) #loadMeuse() sessionInfo() crs = CRS("epsg:28992") data("meuse") coordinates(meuse) <- ~x+y proj4string(meuse) <- crs data("meuse.grid") coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE proj4string(meuse.grid) <- crs meuse$value = log(meuse$zinc) meuse.grid = meuse.grid[sample(1:dim(meuse.grid)[1], 100),] output = interpolate(meuse, meuse.grid, list(mean=T, variance=T, nsim = 5), methodName = "automap") summary(t(output$outputTable), digits = 4) output = interpolate(meuse, meuse.grid, optList = list(idpRange = seq(0.1, 2.9, 0.5), nfold = 3), outputWhat = list(mean=TRUE), methodName = "idw") summary(t(output$outputTable), digits = 4) output = interpolate(meuse, meuse.grid, list(mean=T, variance=T),methodName = "transGaussian") summary(t(output$outputTable), digits = 4) set.seed(15331) data(meuse) meuse = meuse[sample(dim(meuse)[1],30),] meuse$value=meuse$zinc coordinates(meuse) = ~x+y mgrid = spsample(meuse,10,"regular") gridded(mgrid) = TRUE output1 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), methodName = "copula") output2 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), methodName = "copula",optList = list(methodParameters = output1$methodParameters)) output3 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), methodName = "automap",optList = list(model = c("Exp", "Sph")), cv = TRUE) output4 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), methodName = "psgp", cv = TRUE) output5 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), cv = TRUE, methodName = "automap") output6 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), optList = list(variogramModel = output5$variogramModel), cv = TRUE) output6$variogramModel$range[2] = 1000 output7 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), cv = TRUE, optList = list(variogramModel = output6$variogramModel)) output8 = interpolate(meuse, mgrid, list(mean=T, variance=T, excprob = 1000,quantile = 0.5), cv = TRUE, optList = list(nclus = 4), methodName = "automap") all.equal(output5$predictions, output6$predictions) # Should be the same all.equal(output5$predictions, output8$predictions) # Should be the same all.equal(output5$predictions, output7$predictions) # Should be different summary(t(output$outputTable), digits = 4) output2$outputTable - output1$outputTable summary(output3$predictions, digits = 4) summary(output4$predictions, digits = 4)