skip_on_cran() skip_on_os("mac") skip_if_not_installed("mice") skip_if_not_installed("nnet") test_that("param", { set.seed(1234) d <- suppressWarnings(mice::ampute(mtcars)) ## Ampute mtcars and impute two data sets imp <- suppressWarnings(mice::mice(d$amp, m = 2, printFlag = FALSE)) imp.l <- mice::complete(imp, action = "long") model <- list() ## Fit and pool models for (i in 1:2) { capture.output({ model[[i]] <- nnet::multinom(cyl ~ disp + hp, data = imp.l, subset = .imp == i) }) } pooled <- mice::pool(model) out1 <- get_parameters(pooled) out2 <- get_statistic(pooled) out1$Estimate <- round(out1$Estimate, 4) out2$Statistic <- round(out2$Statistic, 4) expect_equal(out1$Response, c("6", "6", "6", "8", "8", "8")) expect_equal(out2$Response, c("6", "6", "6", "8", "8", "8")) expect_identical( capture.output(out1), c( " Parameter Estimate Response", "1 (Intercept) -54.2937 6", "2 disp 0.2231 6", "3 hp 0.2030 6", "4 (Intercept) -92.8615 8", "5 disp 0.2578 8", "6 hp 0.4259 8" ) ) expect_identical( capture.output(out2), c( " Parameter Statistic Response", "1 (Intercept) -1.1577 6", "2 disp 0.5763 6", "3 hp 0.3571 6", "4 (Intercept) -1.3732 8", "5 disp 0.6402 8", "6 hp 0.6742 8" ) ) expect_identical( find_parameters(pooled), list(conditional = c("(Intercept)", "disp", "hp")) ) })