skip_if_not_installed("parsnip") skip_on_cran() data(mtcars) m <- parsnip::linear_reg() m <- parsnip::set_engine(m, "lm") m <- parsnip::set_mode(m, "regression") m <- parsnip::fit(m, mpg ~ am + vs, data = mtcars) test_that("find_formula", { expect_equal( find_formula(m), list(conditional = as.formula("mpg ~ am + vs")), ignore_attr = TRUE ) }) test_that("model_info", { expect_true(model_info(m)$is_linear) }) test_that("loglik", { expect_equal( get_loglikelihood(m), -83.8397585518224, tolerance = 1e-4, ignore_attr = TRUE ) }) test_that("get_df", { expect_equal(get_df(m), 29, ignore_attr = TRUE) expect_equal(get_df(m, type = "model"), 4, ignore_attr = TRUE) }) test_that("find_predictors", { expect_identical(find_predictors(m), list(conditional = c("am", "vs"))) expect_identical( find_predictors(m, flatten = TRUE), c("am", "vs") ) expect_null(find_predictors(m, effects = "random")) }) test_that("find_random", { expect_null(find_random(m)) }) test_that("get_random", { expect_warning(get_random(m)) }) test_that("find_response", { expect_identical(find_response(m), "mpg") }) test_that("get_response", { expect_equal(get_response(m), mtcars$mpg) }) test_that("get_predictors", { expect_equal(colnames(get_predictors(m)), c("am", "vs")) }) test_that("link_inverse", { expect_equal(link_inverse(m)(0.2), 0.2, tolerance = 1e-5) }) test_that("linkfun", { expect_equal(link_function(m)(0.2), -1.609438, tolerance = 1e-4) }) test_that("get_data", { expect_equal(nrow(get_data(m)), 32) expect_named(get_data(m), c("mpg", "am", "vs")) })