skip_if_not_installed("nonnest2") test_that("get_loglikelihood - lm", { x <- lm(Sepal.Length ~ Petal.Width + Species, data = iris) ll <- loglikelihood(x, estimator = "ML") ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) expect_equal(attributes(ll)$df, attributes(ll2)$df, tolerance = 1e-4, ignore_attr = TRUE) expect_equal(sum(attributes(ll)$per_obs - nonnest2::llcont(x)), 0, tolerance = 1e-4, ignore_attr = TRUE) # REML ll <- loglikelihood(x, estimator = "REML") ll2 <- stats::logLik(x, REML = TRUE) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) # With weights x <- lm(Sepal.Length ~ Petal.Width + Species, data = iris, weights = Petal.Length) ll <- loglikelihood(x, estimator = "ML") ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) # log-response x <- lm(mpg ~ wt, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), -80.01471, tolerance = 1e-3) x <- lm(log(mpg) ~ wt, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), 19.42433, tolerance = 1e-3) expect_equal(as.numeric(get_loglikelihood(x, check_response = TRUE)), -75.21614, tolerance = 1e-3) expect_equal( as.numeric(get_loglikelihood(x, check_response = TRUE)), as.numeric(get_loglikelihood(x)) + as.numeric(get_loglikelihood_adjustment(x)), tolerance = 1e-3 ) set.seed(123) mtcars$wg <- abs(rnorm(nrow(mtcars), mean = 1)) x <- lm(mpg ~ wt, weights = wg, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), -82.03376, tolerance = 1e-3) x <- lm(log(mpg) ~ wt, weights = wg, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), 18.4205, tolerance = 1e-3) expect_equal(as.numeric(get_loglikelihood(x, check_response = TRUE)), -75.58669, tolerance = 1e-3) # sqrt-response x <- lm(sqrt(mpg) ~ wt, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), -7.395031, tolerance = 1e-3) expect_equal(as.numeric(get_loglikelihood(x, check_response = TRUE)), -76.89597, tolerance = 1e-3) # power to x x <- lm(mpg^3.5 ~ wt, weights = wg, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), -385.6256, tolerance = 1e-3) expect_equal(as.numeric(get_loglikelihood(x, check_response = TRUE)), -110.5192, tolerance = 1e-3) # scale x <- lm(mpg / 3.5 ~ wt, weights = wg, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), -41.94534, tolerance = 1e-3) expect_equal(as.numeric(get_loglikelihood(x, check_response = TRUE)), -82.03376, tolerance = 1e-3) # scale, no weights x <- lm(mpg / 3.5 ~ wt, data = mtcars) expect_equal(as.numeric(get_loglikelihood(x)), -39.9263, tolerance = 1e-3) expect_equal(as.numeric(get_loglikelihood(x, check_response = TRUE)), -80.01471, tolerance = 1e-3) }) test_that("get_loglikelihood - not supported", { # Box-Cox m <- lm((mpg^0.7 - 1) / 0.7 ~ hp, data = mtcars) expect_warning(get_loglikelihood(m, check_response = TRUE), regex = "Could not compute") # Inverse m <- lm(1 / mpg ~ hp, data = mtcars) expect_warning(get_loglikelihood(m, check_response = TRUE), regex = "Could not compute") }) test_that("get_loglikelihood - glm", { x <- glm(vs ~ mpg * disp, data = mtcars, family = "binomial") ll <- loglikelihood(x) ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) expect_equal(attributes(ll)$df, attributes(ll2)$df, tolerance = 1e-4, ignore_attr = TRUE) expect_equal(sum(attributes(ll)$per_obs - nonnest2::llcont(x)), 0, tolerance = 1e-4, ignore_attr = TRUE) x <- glm(cbind(cyl, gear) ~ mpg, data = mtcars, weights = disp, family = binomial) ll <- loglikelihood(x) ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) expect_equal(attributes(ll)$df, attributes(ll2)$df, tolerance = 1e-4, ignore_attr = TRUE) # Nonnest2 seems to be giving diffenrent results, # which sums doesn't add up to base R's result... so commenting off # expect_equal(sum(attributes(ll)$per_obs - nonnest2::llcont(x)), 0) }) test_that("get_loglikelihood - (g)lmer", { skip_if_offline() skip_if_not_installed("lme4") x <- lme4::lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris) # REML ll <- loglikelihood(x, estimator = "REML") ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) expect_equal(attributes(ll)$df, attributes(ll2)$df, tolerance = 1e-4, ignore_attr = TRUE) # ML ll <- loglikelihood(x, estimator = "ML") ll2 <- stats::logLik(x, REML = FALSE) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) # default ll <- loglikelihood(x) ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) expect_equal(attributes(ll)$df, attributes(ll2)$df, tolerance = 1e-4, ignore_attr = TRUE) x <- lme4::glmer(vs ~ mpg + (1 | cyl), data = mtcars, family = "binomial") ll <- loglikelihood(x, estimator = "REML") # no REML for glmer ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) expect_equal(attributes(ll)$df, attributes(ll2)$df, tolerance = 1e-4, ignore_attr = TRUE) ll <- loglikelihood(x, estimator = "ML") ll2 <- stats::logLik(x, REML = FALSE) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 1e-4, ignore_attr = TRUE) skip_if_not_installed("httr2") model <- download_model("lmerMod_1") skip_if(is.null(model)) expect_equal( get_loglikelihood(model, estimator = "REML"), logLik(model, REML = TRUE), tolerance = 0.01, ignore_attr = TRUE ) expect_equal( get_loglikelihood(model, estimator = "ML"), logLik(model, REML = FALSE), tolerance = 0.01, ignore_attr = TRUE ) model <- download_model("merMod_1") skip_if(is.null(model)) expect_equal( get_loglikelihood(model, estimator = "REML"), logLik(model, REML = FALSE), tolerance = 0.01, ignore_attr = TRUE ) expect_equal( get_loglikelihood(model, estimator = "ML"), logLik(model, REML = FALSE), tolerance = 0.01, ignore_attr = TRUE ) }) test_that("get_loglikelihood - stanreg ", { skip_on_cran() skip_if_not_installed("rstanarm") x <- rstanarm::stan_glm(Sepal.Length ~ Petal.Width, data = iris, refresh = 0) ref <- lm(Sepal.Length ~ Petal.Width, data = iris) ll <- loglikelihood(x) ll2 <- loglikelihood(ref) expect_equal(as.numeric(ll), as.numeric(ll2), tolerance = 2) expect_equal(mean(abs(attributes(ll)$per_obs - attributes(ll2)$per_obs)), 0, tolerance = 0.1) }) test_that("get_loglikelihood - ivreg", { skip_if_not_installed("ivreg") data("CigaretteDemand", package = "ivreg") x <- ivreg::ivreg(log(packs) ~ log(rprice) + log(rincome) | salestax + log(rincome), data = CigaretteDemand) ll <- loglikelihood(x) expect_equal(as.numeric(ll), 13.26255, tolerance = 1e-3) }) test_that("get_loglikelihood - plm", { skip_if_not_installed("plm") data("Produc", package = "plm") x <- suppressWarnings( plm::plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, index = c("state", "year") ) ) ll <- loglikelihood(x) expect_equal(as.numeric(ll), 1534.532, tolerance = 1e-3) }) test_that("get_loglikelihood - iv_robust", { skip_if_not_installed("estimatr") x <- estimatr::iv_robust(mpg ~ gear + cyl | carb + wt, data = mtcars) ll <- loglikelihood(x) expect_equal(as.numeric(ll), -84.60057, tolerance = 1e-3) }) test_that("get_loglikelihood - mgcv", { skip_if_not_installed("mgcv") x <- mgcv::gam(Sepal.Length ~ s(Petal.Width), data = iris) ll <- insight::get_loglikelihood(x) ll2 <- stats::logLik(x) expect_equal(as.numeric(ll), -96.26613, tolerance = 1e-3) # TODO: I'm not sure why this differes :/ # expect_equal(as.numeric(ll), as.numeric(ll2)) x <- mgcv::gamm(Sepal.Length ~ s(Petal.Width), random = list(Species = ~1), data = iris) # Which one to get? }) test_that("get_loglikelihood - gamm4", { skip_if_not_installed("gamm4") x <- gamm4::gamm4(Sepal.Length ~ s(Petal.Width), data = iris) ll <- insight::get_loglikelihood(x) # It works, but it's quite diferent from the mgcv result expect_equal(as.numeric(ll), -101.1107, tolerance = 1e-3) }) test_that("get_loglikelihood - Bernoulli with inversed levels", { d <- mtcars d$zero <- factor(d$vs, levels = c(0, 1)) d$ones <- factor(d$vs, levels = c(1, 0)) ml_zero <- glm(zero ~ mpg, family = binomial, data = d) ml_ones <- glm(ones ~ mpg, family = binomial, data = d) expect_equal(logLik(ml_zero), get_loglikelihood(ml_zero), ignore_attr = TRUE) expect_equal(logLik(ml_ones), get_loglikelihood(ml_ones), ignore_attr = TRUE) expect_equal(get_loglikelihood(ml_zero), get_loglikelihood(ml_ones), ignore_attr = TRUE) }) test_that("get_loglikelihood - fails for negative values for some transformation", { data(mtcars) dafr <- data.frame(y = mtcars$mpg * -1, x = mtcars$hp) m <- lm(y^2 ~ x, data = dafr) expect_warning(get_loglikelihood(m, check_response = TRUE), regex = "Could not") expect_equal( get_loglikelihood(m, check_response = TRUE, verbose = FALSE), get_loglikelihood(m, verbose = FALSE), tolerance = 1e-4 ) expect_null(get_loglikelihood_adjustment(m)) })