skip_on_cran() skip_if_offline() skip_on_os("mac") skip_if_not_installed("brms") skip_if_not_installed("httr2") # Model fitting ----------------------------------------------------------- m1 <- suppressWarnings(insight::download_model("brms_mixed_6")) m2 <- insight::download_model("brms_mv_4") m3 <- insight::download_model("brms_2") m4 <- insight::download_model("brms_zi_3") m5 <- insight::download_model("brms_mv_5") m6 <- insight::download_model("brms_corr_re1") m7 <- suppressWarnings(insight::download_model("brms_mixed_8")) m8 <- insight::download_model("brms_ordinal_1") brms_trunc_1 <- suppressWarnings(download_model("brms_trunc_1")) all_loaded <- !vapply(list(m1, m2, m3, m4, m5, m6, m7, m8, brms_trunc_1), is.null, TRUE) skip_if(!all(all_loaded)) # Tests ------------------------------------------------------------------- test_that("get_response.brmsfit: trunc", { expect_identical(find_response(brms_trunc_1), "count") expect_length(get_response(brms_trunc_1, source = "env"), 236) expect_length(get_response(brms_trunc_1, source = "mf"), 236) }) test_that("get_predicted.brmsfit: ordinal dv", { skip_if_not_installed("bayestestR") skip_if_not_installed("rstantools") pred1 <- get_predicted(m8, ci = 0.95) pred2 <- get_predicted(m8, ci_method = "hdi", ci = 0.95) expect_s3_class(pred1, "get_predicted") expect_s3_class(pred1, "data.frame") expect_true(all(c("Row", "Response") %in% colnames(pred1))) # ci_method changes intervals but not se or predicted pred1 <- data.frame(pred1) pred2 <- data.frame(pred2) expect_equal(pred1$Row, pred2$Row, ignore_attr = TRUE) expect_equal(pred1$Response, pred2$Response, ignore_attr = TRUE) expect_equal(pred1$Predicted, pred2$Predicted, ignore_attr = TRUE) expect_equal(pred1$SE, pred2$SE, ignore_attr = TRUE) expect_false(mean(pred1$CI_low == pred2$CI_low) > 0.1) # most CI bounds are different expect_false(mean(pred1$CI_high == pred2$CI_high) > 0.1) # most CI bounds are different # compare to manual predictions pred3 <- get_predicted(m8, centrality_function = stats::median, ci = 0.95) manual <- rstantools::posterior_epred(m8) manual <- apply(manual[, , 1], 2, median) expect_equal(pred3$Predicted[1:32], manual, ignore_attr = TRUE) manual <- rstantools::posterior_epred(m8) manual <- apply(manual[, , 1], 2, mean) # nolint expect_equal(pred1$Predicted[1:32], manual, ignore_attr = TRUE) }) test_that("find_statistic", { expect_null(find_statistic(m1)) expect_null(find_statistic(m2)) expect_null(find_statistic(m3)) expect_null(find_statistic(m4)) expect_null(find_statistic(m5)) }) test_that("n_parameters", { expect_identical(n_parameters(m1), 65L) expect_identical(n_parameters(m1, effects = "fixed"), 5L) }) test_that("model_info", { expect_true(model_info(m3)$is_trial) expect_true(model_info(m5)[[1]]$is_zero_inflated) expect_true(model_info(m5)[[1]]$is_bayesian) }) test_that("clean_names", { expect_identical( clean_names(m1), c("count", "Age", "Base", "Trt", "patient") ) expect_identical( clean_names(m2), c( "Sepal.Length", "Sepal.Width", "Petal.Length", "Species" ) ) expect_identical(clean_names(m3), c("r", "n", "treat", "c2")) expect_identical( clean_names(m4), c("count", "child", "camper", "persons") ) expect_identical( clean_names(m5), c( "count", "count2", "child", "camper", "persons", "livebait" ) ) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("Age", "Base", "Trt"))) expect_identical( find_predictors(m1, flatten = TRUE), c("Age", "Base", "Trt") ) expect_identical( find_predictors(m1, effects = "all", component = "all"), list( conditional = c("Age", "Base", "Trt"), random = "patient" ) ) expect_identical( find_predictors( m1, effects = "all", component = "all", flatten = TRUE ), c("Age", "Base", "Trt", "patient") ) expect_identical( find_predictors(m2), list( SepalLength = list(conditional = c( "Petal.Length", "Sepal.Width", "Species" )), SepalWidth = list(conditional = "Species") ) ) expect_identical( find_predictors(m2, flatten = TRUE), c("Petal.Length", "Sepal.Width", "Species") ) expect_identical(find_predictors(m3), list(conditional = c("treat", "c2"))) expect_identical( find_predictors(m4), list( conditional = c("child", "camper"), zero_inflated = c("child", "camper") ) ) expect_identical( find_predictors(m4, effects = "random"), list(random = "persons", zero_inflated_random = "persons") ) expect_identical(find_predictors(m4, flatten = TRUE), c("child", "camper")) expect_identical( find_predictors(m5), list( count = list( conditional = c("child", "camper"), zero_inflated = "camper" ), count2 = list( conditional = c("child", "livebait"), zero_inflated = "child" ) ) ) }) test_that("find_response", { expect_identical(find_response(m1, combine = TRUE), "count") expect_identical( find_response(m2, combine = TRUE), c(SepalLength = "Sepal.Length", SepalWidth = "Sepal.Width") ) expect_identical(find_response(m3, combine = TRUE), c("r", "n")) expect_identical(find_response(m1, combine = FALSE), "count") expect_identical( find_response(m2, combine = FALSE), c(SepalLength = "Sepal.Length", SepalWidth = "Sepal.Width") ) expect_identical(find_response(m3, combine = FALSE), c("r", "n")) expect_identical(find_response(m4, combine = FALSE), "count") expect_identical( find_response(m5, combine = TRUE), c(count = "count", count2 = "count2") ) }) test_that("get_response", { expect_length(get_response(m1), 236) expect_identical(ncol(get_response(m2)), 2L) expect_identical( colnames(get_response(m2)), c("Sepal.Length", "Sepal.Width") ) expect_identical(ncol(get_response(m3)), 2L) expect_identical(colnames(get_response(m3)), c("r", "n")) expect_length(get_response(m4), 250) expect_identical(colnames(get_response(m5)), c("count", "count2")) }) test_that("find_variables", { expect_identical( find_variables(m1), list( response = "count", conditional = c("Age", "Base", "Trt"), random = "patient" ) ) expect_identical( find_variables(m6), list( response = "y", conditional = "x", random = "id", sigma = "x", sigma_random = "id" ) ) expect_identical( find_variables(m1, effects = "fixed"), list( response = "count", conditional = c("Age", "Base", "Trt") ) ) expect_null(find_variables(m1, component = "zi")) expect_identical( find_variables(m2), list( response = c(SepalLength = "Sepal.Length", SepalWidth = "Sepal.Width"), SepalLength = list(conditional = c( "Petal.Length", "Sepal.Width", "Species" )), SepalWidth = list(conditional = "Species") ) ) expect_identical( find_variables(m2, flatten = TRUE), c( "Sepal.Length", "Sepal.Width", "Petal.Length", "Species" ) ) expect_identical(find_variables(m3), list( response = c("r", "n"), conditional = c("treat", "c2") )) expect_identical( find_variables(m4), list( response = "count", conditional = c("child", "camper"), random = "persons", zero_inflated = c("child", "camper"), zero_inflated_random = "persons" ) ) expect_identical( find_variables(m4, flatten = TRUE), c("count", "child", "camper", "persons") ) }) test_that("n_obs", { expect_identical(n_obs(m1), 236L) expect_identical(n_obs(m2), 150L) expect_identical(n_obs(m3), 10L) expect_identical(n_obs(m4), 250L) expect_identical(n_obs(m5), 250L) }) test_that("find_random", { expect_identical(find_random(m5), list( count = list( random = "persons", zero_inflated_random = "persons" ), count2 = list( random = "persons", zero_inflated_random = "persons" ) )) expect_identical(find_random(m5, flatten = TRUE), "persons") expect_identical(find_random(m6, flatten = TRUE), "id") }) test_that("get_random", { zinb <- get_data(m4) expect_identical(get_random(m4), zinb[, "persons", drop = FALSE]) }) test_that("get_data", { d <- get_data(m6) expect_identical(nrow(d), 200L) expect_identical(ncol(d), 3L) }) test_that("find_paramaters", { expect_identical( find_parameters(m1), list( conditional = c( "b_Intercept", "b_Age", "b_Base", "b_Trt1", "b_Base:Trt1" ), random = c(sprintf("r_patient[%i,Intercept]", 1:59), "sd_patient__Intercept") ) ) expect_identical( find_parameters(m2), structure( list( SepalLength = list( conditional = c( "b_SepalLength_Intercept", "b_SepalLength_Petal.Length", "b_SepalLength_Sepal.Width", "b_SepalLength_Speciesversicolor", "b_SepalLength_Speciesvirginica" ), sigma = "sigma_SepalLength" ), SepalWidth = list( conditional = c( "b_SepalWidth_Intercept", "b_SepalWidth_Speciesversicolor", "b_SepalWidth_Speciesvirginica" ), sigma = "sigma_SepalWidth" ) ), is_mv = "1" ) ) expect_identical( find_parameters(m4), list( conditional = c("b_Intercept", "b_child", "b_camper"), random = c(sprintf("r_persons[%i,Intercept]", 1:4), "sd_persons__Intercept"), zero_inflated = c("b_zi_Intercept", "b_zi_child", "b_zi_camper"), zero_inflated_random = c(sprintf("r_persons__zi[%i,Intercept]", 1:4), "sd_persons__zi_Intercept") ) ) expect_identical( find_parameters(m5, effects = "all"), structure( list( count = list( conditional = c("b_count_Intercept", "b_count_child", "b_count_camper"), random = c(sprintf("r_persons__count[%i,Intercept]", 1:4), "sd_persons__count_Intercept"), zero_inflated = c("b_zi_count_Intercept", "b_zi_count_camper"), zero_inflated_random = c(sprintf("r_persons__zi_count[%i,Intercept]", 1:4), "sd_persons__zi_count_Intercept") ), count2 = list( conditional = c( "b_count2_Intercept", "b_count2_child", "b_count2_livebait" ), random = c(sprintf("r_persons__count2[%i,Intercept]", 1:4), "sd_persons__count2_Intercept"), zero_inflated = c("b_zi_count2_Intercept", "b_zi_count2_child"), zero_inflated_random = c( sprintf("r_persons__zi_count2[%i,Intercept]", 1:4), "sd_persons__zi_count2_Intercept" ) ) ), is_mv = "1" ) ) }) test_that("find_paramaters", { expect_identical( colnames(get_parameters(m4)), c( "b_Intercept", "b_child", "b_camper", "b_zi_Intercept", "b_zi_child", "b_zi_camper" ) ) expect_identical( colnames(get_parameters(m4, component = "zi")), c("b_zi_Intercept", "b_zi_child", "b_zi_camper") ) expect_identical( colnames(get_parameters(m4, effects = "all")), c( "b_Intercept", "b_child", "b_camper", "r_persons[1,Intercept]", "r_persons[2,Intercept]", "r_persons[3,Intercept]", "r_persons[4,Intercept]", "sd_persons__Intercept", "b_zi_Intercept", "b_zi_child", "b_zi_camper", "r_persons__zi[1,Intercept]", "r_persons__zi[2,Intercept]", "r_persons__zi[3,Intercept]", "r_persons__zi[4,Intercept]", "sd_persons__zi_Intercept" ) ) expect_identical( colnames(get_parameters(m4, effects = "random", component = "conditional")), c( "r_persons[1,Intercept]", "r_persons[2,Intercept]", "r_persons[3,Intercept]", "r_persons[4,Intercept]", "sd_persons__Intercept" ) ) expect_identical( colnames(get_parameters(m5, effects = "random", component = "conditional")), c( "r_persons__count[1,Intercept]", "r_persons__count[2,Intercept]", "r_persons__count[3,Intercept]", "r_persons__count[4,Intercept]", "sd_persons__count_Intercept", "r_persons__count2[1,Intercept]", "r_persons__count2[2,Intercept]", "r_persons__count2[3,Intercept]", "r_persons__count2[4,Intercept]", "sd_persons__count2_Intercept" ) ) expect_identical( colnames(get_parameters(m5, effects = "all", component = "all")), c( "b_count_Intercept", "b_count_child", "b_count_camper", "r_persons__count[1,Intercept]", "r_persons__count[2,Intercept]", "r_persons__count[3,Intercept]", "r_persons__count[4,Intercept]", "sd_persons__count_Intercept", "b_zi_count_Intercept", "b_zi_count_camper", "r_persons__zi_count[1,Intercept]", "r_persons__zi_count[2,Intercept]", "r_persons__zi_count[3,Intercept]", "r_persons__zi_count[4,Intercept]", "sd_persons__zi_count_Intercept", "b_count2_Intercept", "b_count2_child", "b_count2_livebait", "r_persons__count2[1,Intercept]", "r_persons__count2[2,Intercept]", "r_persons__count2[3,Intercept]", "r_persons__count2[4,Intercept]", "sd_persons__count2_Intercept", "b_zi_count2_Intercept", "b_zi_count2_child", "r_persons__zi_count2[1,Intercept]", "r_persons__zi_count2[2,Intercept]", "r_persons__zi_count2[3,Intercept]", "r_persons__zi_count2[4,Intercept]", "sd_persons__zi_count2_Intercept" ) ) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) expect_length(link_function(m2), 2) expect_false(is.null(link_function(m3))) expect_false(is.null(link_function(m4))) expect_length(link_function(m5), 2) }) test_that("linkinv", { expect_false(is.null(link_inverse(m1))) expect_length(link_inverse(m2), 2) expect_false(is.null(link_inverse(m3))) expect_false(is.null(link_inverse(m4))) expect_length(link_inverse(m2), 2) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) expect_true(is_multivariate(m2)) expect_false(is_multivariate(m3)) expect_false(is_multivariate(m4)) expect_true(is_multivariate(m5)) }) test_that("find_terms", { expect_identical( find_terms(m2), list( SepalLength = list( response = "Sepal.Length", conditional = c("Petal.Length", "Sepal.Width", "Species") ), SepalWidth = list( response = "Sepal.Width", conditional = "Species" ) ) ) }) test_that("find_algorithm", { expect_equal( find_algorithm(m1), list( algorithm = "sampling", chains = 1, iterations = 500, warmup = 250 ), ignore_attr = TRUE ) }) test_that("get_priors", { expect_equal( get_priors(m7), data.frame( Parameter = c( "b_Intercept", "b_Age", "b_Base", "b_Trt1", "b_Base:Trt1", "sd_patient__Intercept", "sd_patient__Age", "cor_patient__Intercept__Age" ), Distribution = c( "student_t", "student_t", "student_t", "student_t", "student_t", "cauchy", "cauchy", "lkj" ), Location = c(1.4, 0, 0, 0, 0, NA, NA, 1), Scale = c(2.5, 10, 10, 10, 10, NA, NA, NA), df = c(3, 5, 5, 5, 5, NA, NA, NA), stringsAsFactors = FALSE ), ignore_attr = TRUE ) expect_equal( get_priors(m3), data.frame( Parameter = c("b_Intercept", "b_treat1", "b_c2", "b_treat1:c2"), Distribution = c("student_t", "uniform", "uniform", "uniform"), Location = c(0, NA, NA, NA), Scale = c(2.5, NA, NA, NA), df = c(3, NA, NA, NA), stringsAsFactors = FALSE ), ignore_attr = TRUE ) }) test_that("Issue #645", { # apparently BH is required to fit these brms models skip_if_not_installed("BH") # sink() writing permission fail on some Windows CI machines skip_on_os("windows") void <- suppressMessages(suppressWarnings(capture.output({ mod <- brms::brm( silent = 2, data = mtcars, family = brms::cumulative(probit), formula = brms::bf( cyl ~ 1 + mpg + drat + gearnl, gearnl ~ 0 + (1 | gear), nl = TRUE ) ) }))) p <- find_predictors(mod, flatten = TRUE) d <- get_data(mod) expect_true("gear" %in% p) expect_true("gear" %in% colnames(d)) }) test_that("clean_parameters", { expect_equal( clean_parameters(m4), structure( list( Parameter = c( "b_Intercept", "b_child", "b_camper", "r_persons[1,Intercept]", "r_persons[2,Intercept]", "r_persons[3,Intercept]", "r_persons[4,Intercept]", "sd_persons__Intercept", "b_zi_Intercept", "b_zi_child", "b_zi_camper", "r_persons__zi[1,Intercept]", "r_persons__zi[2,Intercept]", "r_persons__zi[3,Intercept]", "r_persons__zi[4,Intercept]", "sd_persons__zi_Intercept" ), Effects = c( "fixed", "fixed", "fixed", "random", "random", "random", "random", "random", "fixed", "fixed", "fixed", "random", "random", "random", "random", "random" ), Component = c( "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated" ), Group = c( "", "", "", "Intercept: persons", "Intercept: persons", "Intercept: persons", "Intercept: persons", "SD/Cor: persons", "", "", "", "Intercept: persons", "Intercept: persons", "Intercept: persons", "Intercept: persons", "SD/Cor: persons" ), Cleaned_Parameter = c( "(Intercept)", "child", "camper", "persons.1", "persons.2", "persons.3", "persons.4", "(Intercept)", "(Intercept)", "child", "camper", "persons.1", "persons.2", "persons.3", "persons.4", "(Intercept)" ) ), class = c("clean_parameters", "data.frame"), row.names = c( NA, -16L ) ), ignore_attr = TRUE ) expect_equal( clean_parameters(m5), structure( list( Parameter = c( "b_count_Intercept", "b_count_child", "b_count_camper", "b_count2_Intercept", "b_count2_child", "b_count2_livebait", "r_persons__count[1,Intercept]", "r_persons__count[2,Intercept]", "r_persons__count[3,Intercept]", "r_persons__count[4,Intercept]", "sd_persons__count_Intercept", "r_persons__count2[1,Intercept]", "r_persons__count2[2,Intercept]", "r_persons__count2[3,Intercept]", "r_persons__count2[4,Intercept]", "sd_persons__count2_Intercept", "b_zi_count_Intercept", "b_zi_count_camper", "b_zi_count2_Intercept", "b_zi_count2_child", "r_persons__zi_count[1,Intercept]", "r_persons__zi_count[2,Intercept]", "r_persons__zi_count[3,Intercept]", "r_persons__zi_count[4,Intercept]", "sd_persons__zi_count_Intercept", "r_persons__zi_count2[1,Intercept]", "r_persons__zi_count2[2,Intercept]", "r_persons__zi_count2[3,Intercept]", "r_persons__zi_count2[4,Intercept]", "sd_persons__zi_count2_Intercept" ), Effects = c( "fixed", "fixed", "fixed", "fixed", "fixed", "fixed", "random", "random", "random", "random", "random", "random", "random", "random", "random", "random", "fixed", "fixed", "fixed", "fixed", "random", "random", "random", "random", "random", "random", "random", "random", "random", "random" ), Component = c( "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "conditional", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated", "zero_inflated" ), Group = c( "", "", "", "", "", "", "Intercept: persons", "Intercept: persons", "Intercept: persons", "Intercept: persons", "SD/Cor: persons", "Intercept: persons2", "Intercept: persons2", "Intercept: persons2", "Intercept: persons2", "SD/Cor: persons", "", "", "", "", "Intercept: persons", "Intercept: persons", "Intercept: persons", "Intercept: persons", "SD/Cor: persons", "Intercept: persons2", "Intercept: persons2", "Intercept: persons2", "Intercept: persons2", "SD/Cor: persons" ), Response = c( "count", "count", "count", "count2", "count2", "count2", "count", "count", "count", "count", "count", "count2", "count2", "count2", "count2", "count2", "count", "count", "count2", "count2", "count", "count", "count", "count", "count", "count2", "count2", "count2", "count2", "count2" ), Cleaned_Parameter = c( "(Intercept)", "child", "camper", "(Intercept)", "child", "livebait", "persons.1", "persons.2", "persons.3", "persons.4", "count_Intercept", "persons2.1", "persons2.2", "persons2.3", "persons2.4", "count2_Intercept", "(Intercept)", "camper", "(Intercept)", "child", "persons.1", "persons.2", "persons.3", "persons.4", "zi_count_Intercept", "persons2.1", "persons2.2", "persons2.3", "persons2.4", "zi_count2_Intercept" ) ), class = c("clean_parameters", "data.frame"), row.names = c(NA, -30L) ), ignore_attr = TRUE ) }) test_that("get_modelmatrix", { out <- get_modelmatrix(m1) expect_identical(dim(out), c(236L, 4L)) m9 <- suppressWarnings(insight::download_model("brms_mo2")) skip_if(is.null(m9)) out <- get_modelmatrix(m9) expect_identical(dim(out), c(32L, 2L)) }) test_that("get_modelmatrix", { m10 <- suppressWarnings(insight::download_model("brms_lf_1")) expect_identical( find_variables(m10), list( response = "carb", conditional = c("gear", "vs"), disc = c("disc", "cyl") ) ) }) # get variance test_that("get_variance works", { mdl <- suppressWarnings(insight::download_model("brms_mixed_9")) out <- get_variance(mdl) expect_equal( out, list( var.fixed = 4.91103174480995, var.random = 22.4069708072874, var.residual = 10.9304525807216, var.distribution = 10.9304525807216, var.dispersion = 0, var.intercept = c(cyl = 22.4069708072874) ), tolerance = 1e-3, ignore_attr = TRUE ) # make sure it's a matrix # expect_true(is.matrix(get_modelmatrix(null_model(mdl)))) }) # get variance test_that("get_variance aligns with get_sigma", { skip_if_not_installed("lme4") data(mtcars) set.seed(123) mdl <- suppressWarnings(insight::download_model("brms_mixed_9")) VC <- lme4::VarCorr(mdl) out1 <- VC$residual__$sd[1, 1]^2 # Residual variance out2 <- get_variance(mdl)$var.residual out3 <- get_sigma(mdl)^2 expect_equal(out1, out2, tolerance = 1e-3, ignore_attr = TRUE) expect_equal(out1, out3, tolerance = 1e-3, ignore_attr = TRUE) expect_equal(out2, out3, tolerance = 1e-3, ignore_attr = TRUE) }) # get variance test_that("get_variance works when sigma is modeled", { data(mtcars) set.seed(123) m <- insight::download_model("brms_sigma_1") expect_message( { out <- get_variance(m) }, regex = "modeled directly" ) expect_equal( out, list( var.fixed = 2.712739833628, var.random = 25.6254745619452, var.dispersion = 0, var.intercept = c(cyl = 25.6254745619452) ), ignore_attr = TRUE, tolerance = 1e-3 ) })