skip_if_not_installed("rms") data(mtcars) m1 <- rms::lrm(am ~ mpg + gear, data = mtcars) test_that("model_info", { expect_true(model_info(m1)$is_bernoulli) expect_true(model_info(m1)$is_binomial) expect_true(model_info(m1)$is_logit) expect_false(model_info(m1)$is_linear) expect_false(model_info(m1)$is_ordinal) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("mpg", "gear"))) expect_identical(find_predictors(m1, flatten = TRUE), c("mpg", "gear")) expect_null(find_predictors(m1, effects = "random")) }) test_that("find_random", { expect_null(find_random(m1)) }) test_that("get_random", { expect_warning(get_random(m1)) }) test_that("find_response", { expect_identical(find_response(m1), "am") }) test_that("get_response", { expect_identical(get_response(m1), mtcars$am) }) test_that("get_predictors", { expect_named(get_predictors(m1), c("mpg", "gear")) }) test_that("link_inverse", { expect_equal(link_inverse(m1)(0.2), plogis(0.2), tolerance = 1e-5) }) test_that("get_data", { expect_identical(nrow(get_data(m1)), 32L) expect_named(get_data(m1), c("am", "mpg", "gear")) }) test_that("find_formula", { expect_length(find_formula(m1), 1) expect_equal( find_formula(m1), list(conditional = as.formula("am ~ mpg + gear")), ignore_attr = TRUE ) }) test_that("find_terms", { expect_identical(find_terms(m1), list( response = "am", conditional = c("mpg", "gear") )) expect_identical(find_terms(m1, flatten = TRUE), c("am", "mpg", "gear")) }) test_that("n_obs", { expect_identical(n_obs(m1), 32) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) }) test_that("linkinverse", { expect_false(is.null(link_inverse(m1))) }) test_that("find_parameters", { expect_identical( find_parameters(m1), list(conditional = c("Intercept", "mpg", "gear")) ) expect_identical(nrow(get_parameters(m1)), 3L) expect_identical( get_parameters(m1)$Parameter, c("Intercept", "mpg", "gear") ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) }) test_that("find_algorithm", { expect_identical(find_algorithm(m1), list(algorithm = "ML")) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "z-statistic") }) m2 <- rms::orm(mpg ~ cyl + disp + hp + drat, data = mtcars) aov_model <- anova(m2) test_that("find_statistic anova", { expect_identical(find_statistic(aov_model), "chi-squared statistic") }) test_that("find_parameters anova", { expect_identical(find_parameters(aov_model), list(conditional = c("cyl", "disp", "hp", "drat", "TOTAL"))) }) test_that("get_statistic anova", { expect_identical( get_statistic(aov_model)$Statistic, aov_model[, 1], ignore_attr = TRUE, tolerance = 1e-3 ) }) # correctly identify ordinal models test_that("model_info for ordinal outcome", { data(mtcars) mtcars$cyl_ord <- ordered(mtcars$cyl) # fit olr fit <- rms::lrm(cyl_ord ~ hp, data = mtcars, tol = 1e-22) expect_false(model_info(fit)$is_bernoulli) expect_true(model_info(fit)$is_ordinal) })