m1 <- lm(Sepal.Length ~ Petal.Width + Species, data = iris) m2 <- lm(log(mpg) ~ log(hp) + cyl + I(cyl^2) + poly(wt, degree = 2, raw = TRUE), data = mtcars ) test_that("model_info", { expect_true(model_info(m1)$is_linear) expect_false(model_info(m1)$is_bayesian) }) test_that("get_residuals", { expect_equal( head(get_residuals(m2)), head(stats::residuals(m2)), tolerance = 1e-3, ignore_attr = TRUE ) }) test_that("get_sigma", { expect_equal(get_sigma(m1), 0.4810113, tolerance = 1e-3, ignore_attr = TRUE) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("Petal.Width", "Species"))) expect_identical( find_predictors(m1, flatten = TRUE), c("Petal.Width", "Species") ) expect_null(find_predictors(m1, effects = "random")) expect_identical(find_predictors(m2), list(conditional = c("hp", "cyl", "wt"))) expect_identical(find_predictors(m2, flatten = TRUE), c("hp", "cyl", "wt")) expect_null(find_predictors(m2, effects = "random")) }) test_that("find_response", { expect_identical(find_response(m1), "Sepal.Length") expect_identical(find_response(m2), "mpg") }) test_that("link_inverse", { expect_identical(link_inverse(m1)(0.2), 0.2) expect_identical(link_inverse(m2)(0.2), 0.2) }) test_that("loglik", { expect_equal(get_loglikelihood(m1), logLik(m1), ignore_attr = TRUE) expect_equal(get_loglikelihood(m2), logLik(m2), ignore_attr = TRUE) }) test_that("get_df", { expect_equal(get_df(m1), df.residual(m1), ignore_attr = TRUE) expect_equal(get_df(m2), df.residual(m2), ignore_attr = TRUE) expect_equal(get_df(m1, type = "model"), attr(logLik(m1), "df"), ignore_attr = TRUE) expect_equal(get_df(m2, type = "model"), attr(logLik(m2), "df"), ignore_attr = TRUE) }) test_that("get_df", { expect_equal( get_df(m1, type = "residual"), df.residual(m1), ignore_attr = TRUE ) expect_equal( get_df(m1, type = "normal"), Inf, ignore_attr = TRUE ) expect_equal( get_df(m1, type = "wald"), df.residual(m1), ignore_attr = TRUE ) }) test_that("get_data", { expect_identical(nrow(get_data(m1)), 150L) expect_named(get_data(m1), c("Sepal.Length", "Petal.Width", "Species")) expect_identical(nrow(get_data(m2)), 32L) expect_named(get_data(m2), c("mpg", "hp", "cyl", "wt")) }) test_that("get_intercept", { expect_equal(get_intercept(m1), as.vector(stats::coef(m1)[1]), ignore_attr = TRUE) expect_equal(get_intercept(m2), as.vector(stats::coef(m2)[1]), ignore_attr = TRUE) }) test_that("find_formula", { expect_length(find_formula(m1), 1) expect_equal( find_formula(m1), list(conditional = as.formula("Sepal.Length ~ Petal.Width + Species")), ignore_attr = TRUE ) expect_length(find_formula(m2), 1) expect_equal( find_formula(m2), list( conditional = as.formula( "log(mpg) ~ log(hp) + cyl + I(cyl^2) + poly(wt, degree = 2, raw = TRUE)" ) ), ignore_attr = TRUE ) }) test_that("find_terms", { expect_identical( find_terms(m1), list( response = "Sepal.Length", conditional = c("Petal.Width", "Species") ) ) expect_identical( find_terms(m2), list( response = "log(mpg)", conditional = c( "log(hp)", "cyl", "I(cyl^2)", "poly(wt, degree = 2, raw = TRUE)" ) ) ) expect_identical( find_terms(m1, flatten = TRUE), c("Sepal.Length", "Petal.Width", "Species") ) expect_identical( find_terms(m2, flatten = TRUE), c( "log(mpg)", "log(hp)", "cyl", "I(cyl^2)", "poly(wt, degree = 2, raw = TRUE)" ) ) }) test_that("find_variables", { expect_identical( find_variables(m1), list( response = "Sepal.Length", conditional = c("Petal.Width", "Species") ) ) expect_identical(find_variables(m2), list( response = "mpg", conditional = c("hp", "cyl", "wt") )) expect_identical( find_variables(m1, flatten = TRUE), c("Sepal.Length", "Petal.Width", "Species") ) expect_identical( find_variables(m2, flatten = TRUE), c("mpg", "hp", "cyl", "wt") ) }) test_that("find_parameters", { expect_identical( find_parameters(m1), list( conditional = c( "(Intercept)", "Petal.Width", "Speciesversicolor", "Speciesvirginica" ) ) ) expect_identical(nrow(get_parameters(m1)), 4L) expect_identical( get_parameters(m1)$Parameter, c( "(Intercept)", "Petal.Width", "Speciesversicolor", "Speciesvirginica" ) ) }) test_that("find_parameters summary.lm", { s <- summary(m1) expect_identical( find_parameters(s), list( conditional = c( "(Intercept)", "Petal.Width", "Speciesversicolor", "Speciesvirginica" ) ) ) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) expect_false(is.null(link_function(m2))) }) test_that("find_algorithm", { expect_identical(find_algorithm(m1), list(algorithm = "OLS")) }) test_that("get_variance", { expect_warning(expect_null(get_variance(m1))) expect_warning(expect_null(get_variance_dispersion(m1))) expect_warning(expect_null(get_variance_distribution(m1))) expect_warning(expect_null(get_variance_fixed(m1))) expect_warning(expect_null(get_variance_intercept(m1))) expect_warning(expect_null(get_variance_random(m1))) expect_warning(expect_null(get_variance_residual(m1))) }) test_that("is_model", { expect_true(is_model(m1)) }) test_that("all_models_equal", { expect_true(all_models_equal(m1, m2)) }) test_that("get_varcov", { expect_equal(diag(get_varcov(m1)), diag(vcov(m1)), tolerance = 1e-5) }) test_that("get_statistic", { expect_equal(get_statistic(m1)$Statistic, c(57.5427, 4.7298, -0.2615, -0.1398), tolerance = 1e-3) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "t-statistic") }) data("DNase") DNase1 <- subset(DNase, Run == 1) m3 <- stats::nls( density ~ stats::SSlogis(log(conc), Asym, xmid, scal), DNase1, start = list( Asym = 1, xmid = 1, scal = 1 ) ) ## Dobson (1990) Page 93: Randomized Controlled Trial : counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12) outcome <- gl(3, 1, 9) treatment <- gl(3, 3) m4 <- glm(counts ~ outcome + treatment, family = poisson()) test_that("is_model", { expect_true(is_model(m3)) }) test_that("is_model", { expect_false(is_model_supported(m3)) }) test_that("all_models_equal", { expect_false(all_models_equal(m1, m2, m3)) expect_false(all_models_equal(m1, m2, m4)) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "t-statistic") expect_identical(find_statistic(m2), "t-statistic") expect_identical(find_statistic(m3), "t-statistic") expect_identical(find_statistic(m4), "z-statistic") }) test_that("find_statistic", { m <- lm(cbind(mpg, hp) ~ cyl + drat, data = mtcars) expect_message( get_predicted(m), "not yet supported for models of class `mlm`" ) expect_s3_class(suppressMessages(get_predicted(m)), "get_predicted") })