skip_if_not_installed("lme4") skip_if_not_installed("ordinal") data(wine, package = "ordinal") data(soup, package = "ordinal") m1 <- ordinal::clmm(rating ~ temp + contact + (1 | judge), data = wine) m2 <- ordinal::clmm(SURENESS ~ PROD + (1 | RESP) + (1 | RESP:PROD), data = soup, link = "probit", threshold = "equidistant" ) test_that("model_info", { expect_true(model_info(m1)$is_ordinal) expect_true(model_info(m2)$is_ordinal) expect_true(model_info(m1)$is_logit) expect_true(model_info(m2)$is_probit) expect_false(model_info(m1)$is_multinomial) expect_false(model_info(m1)$is_linear) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("temp", "contact"))) expect_identical( find_predictors(m1, effects = "all"), list( conditional = c("temp", "contact"), random = "judge" ) ) expect_identical( find_predictors(m1, effects = "all", flatten = TRUE), c("temp", "contact", "judge") ) expect_identical(find_predictors(m2), list(conditional = "PROD")) expect_identical( find_predictors(m2, effects = "all"), list( conditional = "PROD", random = c("RESP", "PROD") ) ) expect_identical( find_predictors(m2, effects = "all", flatten = TRUE), c("PROD", "RESP") ) }) test_that("find_random", { expect_identical(find_random(m1), list(random = "judge")) expect_identical(find_random(m2), list(random = c("RESP", "RESP:PROD"))) expect_identical(find_random(m2, split_nested = TRUE), list(random = c("RESP", "PROD"))) }) test_that("get_random", { expect_equal(get_random(m1), wine[, "judge", drop = FALSE], ignore_attr = TRUE) expect_equal(get_random(m2), soup[, c("RESP", "PROD"), drop = FALSE], ignore_attr = TRUE) }) test_that("find_response", { expect_identical(find_response(m1), "rating") expect_identical(find_response(m2), "SURENESS") }) test_that("get_response", { expect_equal(get_response(m1), wine$rating, ignore_attr = TRUE) expect_equal(get_response(m2), soup$SURENESS, ignore_attr = TRUE) }) test_that("get_predictors", { expect_identical(colnames(get_predictors(m1)), c("temp", "contact")) expect_identical(colnames(get_predictors(m2)), "PROD") }) test_that("link_inverse", { expect_equal(link_inverse(m1)(0.2), plogis(0.2), tolerance = 1e-5) expect_equal(link_inverse(m2)(0.2), pnorm(0.2), tolerance = 1e-5) }) test_that("get_data", { expect_identical(nrow(get_data(m1)), 72L) expect_named(get_data(m1), c("rating", "temp", "contact", "judge")) expect_identical(nrow(get_data(m2)), 1847L) expect_identical(colnames(get_data(m2)), c("SURENESS", "PROD", "RESP")) }) test_that("find_formula", { expect_length(find_formula(m1), 2) expect_equal( find_formula(m1), list( conditional = as.formula("rating ~ temp + contact"), random = as.formula("~1 | judge") ), ignore_attr = TRUE ) expect_length(find_formula(m2), 2) expect_equal( find_formula(m2), list( conditional = as.formula("SURENESS ~ PROD"), random = list(as.formula("~1 | RESP"), as.formula("~1 | RESP:PROD")) ), ignore_attr = TRUE ) }) test_that("find_terms", { expect_identical( find_terms(m1), list( response = "rating", conditional = c("temp", "contact"), random = "judge" ) ) expect_identical( find_terms(m1, flatten = TRUE), c("rating", "temp", "contact", "judge") ) expect_identical( find_terms(m2), list( response = "SURENESS", conditional = "PROD", random = c("RESP", "PROD") ) ) expect_identical( find_terms(m2, flatten = TRUE), c("SURENESS", "PROD", "RESP") ) }) test_that("n_obs", { expect_identical(n_obs(m1), 72) expect_identical(n_obs(m2), 1847) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) expect_false(is.null(link_function(m2))) }) test_that("find_parameters", { expect_identical( find_parameters(m1), list( conditional = c("1|2", "2|3", "3|4", "4|5", "tempwarm", "contactyes") ) ) expect_identical( find_parameters(m2), list(conditional = c("threshold.1", "spacing", "PRODTest")) ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) expect_false(is_multivariate(m2)) }) if (getRversion() > "3.6.3") { skip_on_cran() ## FIXME: check on win-devel test_that("get_variance", { expect_equal( get_variance(m1), list( var.fixed = 3.23207765938872, var.random = 1.27946088209319, var.residual = 3.28986813369645, var.distribution = 3.28986813369645, var.dispersion = 0, var.intercept = c(judge = 1.27946088209319) ), tolerance = 1e-4 ) expect_equal( get_variance(m2), list( var.fixed = 0.132313576370902, var.random = 0.193186321588604, var.residual = 1, var.distribution = 1, var.dispersion = 0, var.intercept = c(`RESP:PROD` = 0.148265480396059, RESP = 0.0449208411925493) ), tolerance = 1e-4 ) }) } test_that("find_statistic", { expect_identical(find_statistic(m1), "z-statistic") expect_identical(find_statistic(m2), "z-statistic") })