skip_if_not_installed("rms") skip_if_not_installed("survival") Surv <- survival::Surv pol <- rms::pol n <- 400 set.seed(1) age <- rnorm(n, 50, 12) sex <- factor(sample(c("Female", "Male"), n, TRUE)) # Population hazard function: h <- 0.02 * exp(0.06 * (age - 50) + 0.8 * (sex == "Female")) d.time <- -log(runif(n)) / h cens <- 15 * runif(n) death <- as.integer(d.time <= cens) d.time <- pmin(d.time, cens) dat <<- data.frame(d.time, death, sex, age, stringsAsFactors = FALSE) m1 <- rms::psm(Surv(d.time, death) ~ sex * pol(age, 2), dist = "lognormal", data = dat ) test_that("model_info", { expect_false(model_info(m1)$is_binomial) expect_false(model_info(m1)$is_logit) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("sex", "age"))) expect_identical(find_predictors(m1, flatten = TRUE), c("sex", "age")) expect_null(find_predictors(m1, effects = "random")) }) test_that("find_random", { expect_null(find_random(m1)) }) test_that("get_random", { expect_warning(get_random(m1)) }) test_that("find_response", { expect_identical(find_response(m1), "Surv(d.time, death)") expect_identical(find_response(m1, combine = FALSE), c("d.time", "death")) }) test_that("get_response", { expect_equal(get_response(m1), dat[, c("d.time", "death")]) }) test_that("get_predictors", { expect_equal(colnames(get_predictors(m1)), c("sex", "age")) }) test_that("link_inverse", { expect_equal(link_inverse(m1)(0.2), exp(0.2), tolerance = 1e-5) }) test_that("get_data", { expect_equal(nrow(get_data(m1)), 400) expect_equal(colnames(get_data(m1)), c("d.time", "death", "sex", "age")) }) test_that("find_formula", { expect_length(find_formula(m1), 1) expect_equal( find_formula(m1), list(conditional = as.formula( "Surv(d.time, death) ~ sex * pol(age, 2)" )), ignore_attr = TRUE ) }) test_that("find_terms", { expect_length(find_terms(m1), 2) expect_equal( find_terms(m1), list( response = "Surv(d.time, death)", conditional = c("sex", "pol(age, 2)") ) ) }) test_that("find_variables", { expect_equal(find_variables(m1), list( response = c("d.time", "death"), conditional = c("sex", "age") )) expect_equal( find_variables(m1, flatten = TRUE), c("d.time", "death", "sex", "age") ) }) test_that("n_obs", { expect_equal(n_obs(m1), 400) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) }) test_that("linkinverse", { expect_false(is.null(link_inverse(m1))) }) test_that("find_parameters", { expect_equal( find_parameters(m1), list( conditional = c( "(Intercept)", "sex=Male", "age", "age^2", "sex=Male * age", "sex=Male * age^2" ) ) ) expect_equal(nrow(get_parameters(m1)), 6) expect_equal( get_parameters(m1)$Parameter, c( "(Intercept)", "sex=Male", "age", "age^2", "sex=Male * age", "sex=Male * age^2" ) ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) }) test_that("find_algorithm", { expect_warning(find_algorithm(m1)) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "z-statistic") })