skip_if_not_installed("lme4") data(sleepstudy, package = "lme4") set.seed(123) sleepstudy$mygrp <- sample.int(5, size = 180, replace = TRUE) sleepstudy$mysubgrp <- NA for (i in 1:5) { filter_group <- sleepstudy$mygrp == i sleepstudy$mysubgrp[filter_group] <- sample.int(30, size = sum(filter_group), replace = TRUE) } m1 <- lme4::lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy ) m2 <- suppressMessages( lme4::lmer(Reaction ~ Days + (1 | mygrp / mysubgrp) + (1 | Subject), data = sleepstudy ) ) test_that("model_info", { expect_true(model_info(m1)$is_linear) expect_true(model_info(m2)$is_linear) }) test_that("loglik", { expect_equal(get_loglikelihood(m1, estimator = "REML"), logLik(m1), ignore_attr = TRUE) expect_equal(get_loglikelihood(m2, estimator = "REML"), logLik(m2), ignore_attr = TRUE) expect_equal(get_loglikelihood(m1), logLik(m1), ignore_attr = TRUE) expect_equal(get_loglikelihood(m2), logLik(m2), ignore_attr = TRUE) expect_equal(get_loglikelihood(m1, estimator = "ML"), logLik(m1, REML = FALSE), ignore_attr = TRUE) expect_equal(get_loglikelihood(m2, estimator = "ML"), logLik(m2, REML = FALSE), ignore_attr = TRUE) }) test_that("get_df", { expect_equal(get_df(m1), df.residual(m1), ignore_attr = TRUE) expect_equal(get_df(m2), df.residual(m2), ignore_attr = TRUE) expect_equal(get_df(m1, type = "model"), attr(logLik(m1), "df"), ignore_attr = TRUE) expect_equal(get_df(m2, type = "model"), attr(logLik(m2), "df"), ignore_attr = TRUE) }) test_that("get_df", { expect_equal( get_df(m1, type = "residual"), df.residual(m1), ignore_attr = TRUE ) expect_equal( get_df(m1, type = "normal"), Inf, ignore_attr = TRUE ) expect_equal( get_df(m1, type = "wald"), df.residual(m1), ignore_attr = TRUE ) expect_equal( get_df(m1, type = "satterthwaite"), c(`(Intercept)` = 16.99973, Days = 16.99998), ignore_attr = TRUE, tolerance = 1e-4 ) expect_equal( as.vector(get_df(m1, type = "kenward")), c(17, 17), ignore_attr = TRUE, tolerance = 1e-4 ) skip_if_not_installed("pbkrtest") expect_equal( as.vector(get_df(m1, type = "kenward")), c(pbkrtest::get_Lb_ddf(m1, c(1, 0)), pbkrtest::get_Lb_ddf(m1, c(0, 1))), ignore_attr = TRUE, tolerance = 1e-4 ) expect_equal( unique(as.vector(get_df(m2, type = "kenward"))), c(pbkrtest::get_Lb_ddf(m2, c(1, 0)), pbkrtest::get_Lb_ddf(m2, c(0, 1))), ignore_attr = TRUE, tolerance = 1e-4 ) }) test_that("n_parameters", { expect_identical(n_parameters(m1), 2L) expect_identical(n_parameters(m2), 2L) expect_identical(n_parameters(m1, effects = "random"), 2L) expect_identical(n_parameters(m2, effects = "random"), 3L) }) test_that("find_offset", { model_off <- lme4::lmer(log(mpg) ~ disp + (1 | cyl), offset = log(wt), data = mtcars) expect_identical(find_offset(model_off), "wt") model_off <- lme4::lmer(log(mpg) ~ disp + (1 | cyl) + offset(log(wt)), data = mtcars) expect_identical(find_offset(model_off), "wt") }) test_that("find_predictors", { expect_identical( find_predictors(m1, effects = "all"), list(conditional = "Days", random = "Subject") ) expect_identical( find_predictors(m1, effects = "all", flatten = TRUE), c("Days", "Subject") ) expect_identical( find_predictors(m1, effects = "fixed"), list(conditional = "Days") ) expect_identical( find_predictors(m1, effects = "fixed", flatten = TRUE), "Days" ) expect_identical( find_predictors(m1, effects = "random"), list(random = "Subject") ) expect_identical( find_predictors(m1, effects = "random", flatten = TRUE), "Subject" ) expect_identical( find_predictors(m2, effects = "all"), list( conditional = "Days", random = c("mysubgrp", "mygrp", "Subject") ) ) expect_identical( find_predictors(m2, effects = "all", flatten = TRUE), c("Days", "mysubgrp", "mygrp", "Subject") ) expect_identical( find_predictors(m2, effects = "fixed"), list(conditional = "Days") ) expect_identical(find_predictors(m2, effects = "random"), list(random = c("mysubgrp", "mygrp", "Subject"))) expect_null(find_predictors(m2, effects = "all", component = "zi")) expect_null(find_predictors(m2, effects = "fixed", component = "zi")) expect_null(find_predictors(m2, effects = "random", component = "zi")) }) test_that("find_random", { expect_identical(find_random(m1), list(random = "Subject")) expect_identical(find_random(m1, flatten = TRUE), "Subject") expect_identical(find_random(m2), list(random = c("mysubgrp:mygrp", "mygrp", "Subject"))) expect_identical(find_random(m2, split_nested = TRUE), list(random = c("mysubgrp", "mygrp", "Subject"))) expect_identical( find_random(m2, flatten = TRUE), c("mysubgrp:mygrp", "mygrp", "Subject") ) expect_identical( find_random(m2, split_nested = TRUE, flatten = TRUE), c("mysubgrp", "mygrp", "Subject") ) }) test_that("find_response", { expect_identical(find_response(m1), "Reaction") expect_identical(find_response(m2), "Reaction") }) test_that("get_response", { expect_equal(get_response(m1), sleepstudy$Reaction, tolerance = 1e-5) }) test_that("link_inverse", { expect_identical(link_inverse(m1)(0.2), 0.2) expect_identical(link_inverse(m2)(0.2), 0.2) }) test_that("get_data", { expect_named(get_data(m1), c("Reaction", "Days", "Subject")) expect_named(get_data(m1, effects = "all"), c("Reaction", "Days", "Subject")) expect_named(get_data(m1, effects = "random"), "Subject") expect_named( get_data(m2), c("Reaction", "Days", "mysubgrp", "mygrp", "Subject") ) expect_named( get_data(m2, effects = "all"), c("Reaction", "Days", "mysubgrp", "mygrp", "Subject") ) expect_named(get_data(m2, effects = "random"), c("mysubgrp", "mygrp", "Subject")) }) test_that("find_formula", { expect_length(find_formula(m1), 2) expect_length(find_formula(m2), 2) expect_equal( find_formula(m1, component = "conditional"), list( conditional = as.formula("Reaction ~ Days"), random = as.formula("~1 + Days | Subject") ), ignore_attr = TRUE ) expect_equal( find_formula(m2, component = "conditional"), list( conditional = as.formula("Reaction ~ Days"), random = list( as.formula("~1 | mysubgrp:mygrp"), as.formula("~1 | mygrp"), as.formula("~1 | Subject") ) ), ignore_attr = TRUE ) }) test_that("find_terms", { expect_identical( find_terms(m1), list( response = "Reaction", conditional = "Days", random = c("Days", "Subject") ) ) expect_identical( find_terms(m1, flatten = TRUE), c("Reaction", "Days", "Subject") ) expect_identical( find_terms(m2), list( response = "Reaction", conditional = "Days", random = c("mysubgrp", "mygrp", "Subject") ) ) expect_identical( find_terms(m2, flatten = TRUE), c("Reaction", "Days", "mysubgrp", "mygrp", "Subject") ) }) test_that("find_variables", { expect_identical( find_variables(m1), list( response = "Reaction", conditional = "Days", random = "Subject" ) ) expect_identical( find_variables(m1, flatten = TRUE), c("Reaction", "Days", "Subject") ) expect_identical( find_variables(m2), list( response = "Reaction", conditional = "Days", random = c("mysubgrp", "mygrp", "Subject") ) ) expect_identical( find_variables(m2, flatten = TRUE), c("Reaction", "Days", "mysubgrp", "mygrp", "Subject") ) }) test_that("get_response", { expect_identical(get_response(m1), sleepstudy$Reaction) }) test_that("get_predictors", { expect_identical(colnames(get_predictors(m1)), "Days") expect_identical(colnames(get_predictors(m2)), "Days") }) test_that("get_random", { expect_identical(colnames(get_random(m1)), "Subject") expect_identical(colnames(get_random(m2)), c("mysubgrp", "mygrp", "Subject")) }) test_that("clean_names", { expect_identical(clean_names(m1), c("Reaction", "Days", "Subject")) expect_identical( clean_names(m2), c("Reaction", "Days", "mysubgrp", "mygrp", "Subject") ) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) expect_false(is.null(link_function(m2))) }) test_that("find_parameters", { expect_identical( find_parameters(m1), list( conditional = c("(Intercept)", "Days"), random = list(Subject = c("(Intercept)", "Days")) ) ) expect_identical(nrow(get_parameters(m1)), 2L) expect_identical(get_parameters(m1)$Parameter, c("(Intercept)", "Days")) expect_identical( find_parameters(m2), list( conditional = c("(Intercept)", "Days"), random = list( `mysubgrp:mygrp` = "(Intercept)", Subject = "(Intercept)", mygrp = "(Intercept)" ) ) ) expect_identical(nrow(get_parameters(m2)), 2L) expect_identical(get_parameters(m2)$Parameter, c("(Intercept)", "Days")) expect_named( get_parameters(m2, effects = "random"), c("mysubgrp:mygrp", "Subject", "mygrp") ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) expect_false(is_multivariate(m2)) }) test_that("get_variance", { expect_equal( get_variance(m1), list( var.fixed = 908.9534, var.random = 1698.084, var.residual = 654.94, var.distribution = 654.94, var.dispersion = 0, var.intercept = c(Subject = 612.1002), var.slope = c(Subject.Days = 35.07171), cor.slope_intercept = c(Subject = 0.06555124) ), tolerance = 1e-1 ) expect_equal(get_variance_fixed(m1), c(var.fixed = 908.9534), tolerance = 1e-1 ) expect_equal(get_variance_random(m1), c(var.random = 1698.084), tolerance = 1e-1 ) expect_equal( get_variance_residual(m1), c(var.residual = 654.94), tolerance = 1e-1 ) expect_equal( get_variance_distribution(m1), c(var.distribution = 654.94), tolerance = 1e-1 ) expect_equal(get_variance_dispersion(m1), c(var.dispersion = 0), tolerance = 1e-1 ) expect_equal( get_variance_intercept(m1), c(var.intercept.Subject = 612.1002), tolerance = 1e-1 ) expect_equal( get_variance_slope(m1), c(var.slope.Subject.Days = 35.07171), tolerance = 1e-1 ) expect_equal( get_correlation_slope_intercept(m1), c(cor.slope_intercept.Subject = 0.06555124), tolerance = 1e-1 ) expect_equal( suppressWarnings(get_variance(m2)), list( var.fixed = 889.3301, var.residual = 941.8135, var.distribution = 941.8135, var.dispersion = 0, var.intercept = c( `mysubgrp:mygrp` = 0, Subject = 1357.4257, mygrp = 24.4064 ) ), tolerance = 1e-1 ) }) test_that("find_algorithm", { expect_identical( find_algorithm(m1), list(algorithm = "REML", optimizer = "nloptwrap") ) }) test_that("find_random_slopes", { expect_identical(find_random_slopes(m1), list(random = "Days")) expect_null(find_random_slopes(m2)) }) suppressMessages({ m3 <- lme4::lmer(Reaction ~ (1 + Days | Subject), data = sleepstudy ) m4 <- lme4::lmer( Reaction ~ (1 | mygrp / mysubgrp) + (1 | Subject), data = sleepstudy ) m5 <- lme4::lmer(Reaction ~ 1 + (1 + Days | Subject), data = sleepstudy ) m6 <- lme4::lmer( Reaction ~ 1 + (1 | mygrp / mysubgrp) + (1 | Subject), data = sleepstudy ) }) test_that("find_formula", { expect_equal( find_formula(m3), list( conditional = as.formula("Reaction ~ 1"), random = as.formula("~1 + Days | Subject") ), ignore_attr = TRUE ) expect_equal( find_formula(m5), list( conditional = as.formula("Reaction ~ 1"), random = as.formula("~1 + Days | Subject") ), ignore_attr = TRUE ) expect_equal( find_formula(m4), list( conditional = as.formula("Reaction ~ 1"), random = list( as.formula("~1 | mysubgrp:mygrp"), as.formula("~1 | mygrp"), as.formula("~1 | Subject") ) ), ignore_attr = TRUE ) expect_equal( find_formula(m6), list( conditional = as.formula("Reaction ~ 1"), random = list( as.formula("~1 | mysubgrp:mygrp"), as.formula("~1 | mygrp"), as.formula("~1 | Subject") ) ), ignore_attr = TRUE ) }) test_that("satterthwaite dof vs. emmeans", { skip_if_not_installed("emmeans") skip_if_not_installed("pbkrtest") v1 <- get_varcov(m2, vcov = "kenward-roger") v2 <- as.matrix(pbkrtest::vcovAdj(m2)) expect_equal(v1, v2, ignore_attr = TRUE, tolerance = 1e-5) p1 <- get_predicted(m2, ci_method = "satterthwaite", ci = 0.95) p1 <- data.frame(p1) em1 <- emmeans::ref_grid( object = m2, specs = ~Days, at = list(Days = sleepstudy$Days), lmer.df = "satterthwaite" ) em1 <- confint(em1) expect_equal(p1$CI_low, em1$lower.CL, ignore_attr = TRUE, tolerance = 1e-5) expect_equal(p1$CI_high, em1$upper.CL, ignore_attr = TRUE, tolerance = 1e-5) p2 <- get_predicted(m2, ci_method = "kenward-roger", ci = 0.95) p2 <- data.frame(p2) em2 <- emmeans::ref_grid( object = m2, specs = ~Days, at = list(Days = sleepstudy$Days), lmer.df = "kenward-roger" ) em2 <- confint(em2) expect_equal(p2$CI_low, em2$lower.CL, ignore_attr = TRUE, tolerance = 1e-5) expect_equal(p2$CI_high, em2$upper.CL, ignore_attr = TRUE, tolerance = 1e-5) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "t-statistic") expect_identical(find_statistic(m2), "t-statistic") }) test_that("get_call", { expect_true(inherits(get_call(m1), "call")) # nolint expect_true(inherits(get_call(m2), "call")) # nolint expect_type(get_call(m1), "language") expect_type(get_call(m2), "language") }) test_that("get_predicted_ci: warning when model matrix and varcovmat do not match", { skip_if(getRversion() < "4.1.0") mod <- suppressMessages(lme4::lmer( weight ~ 1 + Time + I(Time^2) + Diet + Time:Diet + I(Time^2):Diet + (1 + Time + I(Time^2) | Chick), data = ChickWeight )) newdata <- ChickWeight[ChickWeight$Time %in% 0:10 & ChickWeight$Chick %in% c(1, 40), ] newdata$Chick[newdata$Chick == "1"] <- NA expect_warning( get_predicted(mod, data = newdata, include_random = FALSE, ci = 0.95), regexp = "levels" ) # VAB: Not sure where these hard-coded values come from # Related to Issue #693. Not sure if these are valid since we arbitrarily # shrink the varcov and mm to be conformable. In some cases documented in # Issue #556 of {marginaleffects}, we know that this produces incorrect # results, so it's probably best to be conservative and not return results # here. known <- data.frame( Predicted = c(37.53433, 47.95719, 58.78866, 70.02873, 81.67742, 93.73472), SE = c(1.68687, 0.82574, 1.52747, 2.56109, 3.61936, 4.76178), CI_low = c(34.22096, 46.33525, 55.78837, 64.99819, 74.56822, 84.38154), CI_high = c(40.84771, 49.57913, 61.78894, 75.05927, 88.78662, 103.08789) ) p <- suppressWarnings(get_predicted(mod, data = newdata, include_random = FALSE, ci = 0.95)) expect_equal( head(data.frame(p)$Predicted), known$Predicted, tolerance = 1e-3 ) })