skip_if_not_installed("ordinal") data(wine, package = "ordinal") m1 <- ordinal::clm(rating ~ temp * contact, data = wine) m2 <- suppressWarnings(ordinal::clm( # nominal + scale effects cyl ~ wt, scale = ~vs, nominal = ~hp, data = transform(mtcars, cyl = factor(cyl)) )) test_that("model_info", { expect_true(model_info(m1)$is_ordinal) expect_false(model_info(m1)$is_multinomial) expect_false(model_info(m1)$is_linear) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("temp", "contact"))) expect_identical(find_predictors(m1, flatten = TRUE), c("temp", "contact")) expect_null(find_predictors(m1, effects = "random")) expect_identical( find_predictors(m2), list(conditional = "wt", scale = "vs", nominal = "hp") ) }) test_that("find_random", { expect_null(find_random(m1)) }) test_that("get_random", { expect_warning(get_random(m1)) }) test_that("find_response", { expect_identical(find_response(m1), "rating") }) test_that("get_response", { expect_equal(get_response(m1), wine$rating, tolerance = 1e-5) }) test_that("get_predictors", { expect_identical(colnames(get_predictors(m1)), c("temp", "contact")) }) test_that("link_inverse", { expect_equal(link_inverse(m1)(0.2), plogis(0.2), tolerance = 1e-5) }) test_that("get_data", { expect_identical(nrow(get_data(m1)), 72L) expect_identical(colnames(get_data(m1)), c("rating", "temp", "contact")) expect_identical(colnames(get_data(m2)), c("cyl", "wt", "vs", "hp")) }) test_that("find_formula", { expect_length(find_formula(m1), 1) expect_equal( find_formula(m1), list(conditional = as.formula("rating ~ temp * contact")), ignore_attr = TRUE ) expect_equal( find_formula(m2), list( conditional = as.formula("cyl ~ wt"), scale = as.formula("~vs"), nominal = as.formula("~hp") ), ignore_attr = TRUE ) }) test_that("find_variables", { expect_identical( find_variables(m2), list(response = "cyl", conditional = "wt", scale = "vs", nominal = "hp") ) }) test_that("find_terms", { expect_equal( find_terms(m1), list( response = "rating", conditional = c("temp", "contact") ), ignore_attr = TRUE ) expect_identical( find_terms(m1, flatten = TRUE), c("rating", "temp", "contact") ) expect_identical( find_terms(m2), list(response = "cyl", conditional = "wt", scale = "vs", nominal = "hp") ) }) test_that("n_obs", { expect_equal(n_obs(m1), 72) # nolint }) test_that("linkfun", { expect_false(is.null(link_function(m1))) }) test_that("find_parameters", { expect_equal( find_parameters(m1), list( conditional = c( "1|2", "2|3", "3|4", "4|5", "tempwarm", "contactyes", "tempwarm:contactyes" ) ), ignore_attr = TRUE ) expect_identical(nrow(get_parameters(m1)), 7L) expect_identical( get_parameters(m1)$Parameter, c( "1|2", "2|3", "3|4", "4|5", "tempwarm", "contactyes", "tempwarm:contactyes" ) ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "z-statistic") }) test_that("get_predicted", { nd <- wine nd$rating <- NULL x <- as.data.frame(get_predicted(m1)) y <- as.data.frame(get_predicted(m1, predict = NULL, type = "prob")) z <- predict(m1, type = "prob", newdata = nd, se.fit = TRUE) expect_true(all(c("Row", "Response", "Predicted", "SE") %in% colnames(x))) expect_equal(x, y, tolerance = 1e-5) for (i in 1:5) { expect_equal(x$Predicted[x$Response == i], unname(z$fit[, i]), ignore_attr = FALSE) expect_equal(x$SE[x$Response == i], unname(z$se.fit[, i]), ignore_attr = FALSE) } x <- as.data.frame(get_predicted(m1, predict = "classification")) y <- as.data.frame(get_predicted(m1, predict = NULL, type = "class")) z <- predict(m1, type = "class", newdata = nd) expect_equal(x, y, tolerance = 1e-5) expect_equal(as.character(x$Predicted), as.character(z$fit), ignore_attr = FALSE) # we use a hack to handle in-formula factors tmp <- wine tmp$rating <- as.numeric(tmp$rating) tmp <- ordinal::clm(factor(rating) ~ temp * contact, data = tmp) expect_s3_class(get_predicted(tmp), "get_predicted") })