skip_if_not_installed("lme4") data(sleepstudy, package = "lme4") data("Penicillin", package = "lme4") set.seed(12345) sleepstudy$grp <- sample.int(5, size = 180, replace = TRUE) sleepstudy$subgrp <- NA for (i in 1:5) { filter_group <- sleepstudy$grp == i sleepstudy$subgrp[filter_group] <- sample.int(30, size = sum(filter_group), replace = TRUE) } study_data <<- sleepstudy suppressMessages({ fm1 <- lme4::lmer(Reaction ~ Days + (Days | Subject), study_data) fm2 <- lme4::lmer(Reaction ~ Days + (Days || Subject), study_data) fm3 <- lme4::lmer( Reaction ~ Days + (1 + Days || grp / subgrp) + (1 + Days | Subject), data = study_data ) fm4 <- lme4::lmer(Reaction ~ Days + (1 | Subject), study_data) fm5 <- lme4::lmer( Reaction ~ Days + (1 | grp / subgrp) + (1 | Subject), data = study_data ) fm6 <- lme4::lmer(diameter ~ 0 + sample + (1 | plate), data = Penicillin) }) v1 <- suppressWarnings(get_variance(fm1)) v2 <- suppressWarnings(get_variance(fm2)) v3 <- suppressWarnings(get_variance(fm3)) v4 <- suppressWarnings(get_variance(fm4)) v5 <- suppressWarnings(get_variance(fm5)) v6 <- suppressWarnings(get_variance(fm6)) test_that("get_variance-1", { expect_equal(v1$var.intercept, c(Subject = 612.10016), tolerance = 1e-2 ) expect_equal(v1$var.slope, c(Subject.Days = 35.07171), tolerance = 1e-2 ) }) test_that("get_variance-2", { expect_equal(v2$var.intercept, c(Subject = 627.56905), tolerance = 1e-2 ) expect_equal(v2$var.slope, c(Subject.Days = 35.85838), tolerance = 1e-2 ) }) test_that("get_variance-3", { expect_equal(v3$var.intercept, c( subgrp.grp.1 = 0, Subject = 662.52047, grp.1 = 0 ), tolerance = 1e-2 ) expect_equal( v3$var.slope, c( Subject.Days = 34.25771, subgrp.grp.Days = 7.88485, grp.Days = 0 ), tolerance = 1e-2 ) }) test_that("get_variance-4", { expect_equal(v4$var.intercept, c(Subject = 1378.17851), tolerance = 1e-2 ) expect_null(v4$var.slope) }) test_that("get_variance-5", { expect_equal( v5$var.intercept, c( `subgrp:grp` = 38.76069, Subject = 1377.50569, grp = 3.32031 ), tolerance = 1e-2 ) expect_null(v5$var.slope) }) test_that("get_variance-6", { expect_equal(v6$var.intercept, c(plate = 0.71691), tolerance = 1e-2) expect_equal(v6$var.random, 0.71691, tolerance = 1e-2) expect_null(v6$var.slope) }) # further examples test_that("get_variance-7", { model <- lme4::lmer(Reaction ~ Days + (1 + Days || Subject), data = sleepstudy) vmodel <- get_variance(model) expect_equal( vmodel, list( var.fixed = 908.95336, var.random = 627.56905, var.residual = 653.5835, var.distribution = 653.5835, var.dispersion = 0, var.intercept = c(Subject = 627.56905), var.slope = c(Subject.Days = 35.85838) ), tolerance = 1e-2 ) }) test_that("get_variance-8", { model <- lme4::lmer(Reaction ~ Days + (0 + Days || Subject), data = study_data) vmodel <- get_variance(model) expect_equal( vmodel, list( var.fixed = 908.95336, var.random = 1502.179, var.residual = 842.02962, var.distribution = 842.02962, var.dispersion = 0, var.slope = c(Subject.Days = 52.70804) ), tolerance = 1e-2 ) }) # categorical rnd slope test_that("get_variance-9", { data(sleepstudy, package = "lme4") sleepstudy$Days2 <- cut(sleepstudy$Days, breaks = c(-1, 3, 6, 10)) study_data2 <<- sleepstudy model <- lme4::lmer(Reaction ~ Days2 + (1 + Days2 | Subject), data = study_data2) vmodel <- get_variance(model) expect_equal( vmodel, list( var.fixed = 807.085453556748, var.random = 1711.44396436951, var.residual = 748.811071562908, var.distribution = 748.811071562908, var.dispersion = 0, var.intercept = c(Subject = 663.280418978822), var.slope = c( `Subject.Days2(3,6]` = 882.364188919403, `Subject.Days2(6,10]` = 1415.70768194576 ), cor.slope_intercept = structure( c(0.361173061386374, 0.331878499015884), dim = 2:1, dimnames = list(c("Days2(3,6]", "Days2(6,10]"), "Subject") ), cor.slopes = c(`Subject.Days2(3,6]-Days2(6,10]` = 0.847444720096841) ), tolerance = 1e-2 ) }) test_that("get_variance-10", { model <- suppressMessages(lme4::lmer(Reaction ~ Days2 + (1 + Days2 || Subject), data = study_data2)) vmodel <- suppressWarnings(get_variance(model)) expect_equal( vmodel, list( var.fixed = 807.08545355676, var.residual = 740.875581179784, var.distribution = 740.875581179784, var.dispersion = 0, var.intercept = c(Subject = 738.635155172211), var.slope = c( `Subject.Days2(-1,3]` = 0, `Subject.Days2(3,6]` = 994.015865559888, `Subject.Days2(6,10]` = 1545.72576115283 ), cor.slopes = c(`Subject.1.Days2(3,6]-Days2(6,10]` = 0.859480774219098) ), tolerance = 1e-2 ) }) test_that("get_variance-11", { model <- lme4::lmer(Reaction ~ Days2 + (0 + Days2 | Subject), data = study_data2) vmodel <- get_variance(model) expect_equal( vmodel, list( var.fixed = 807.085453556794, var.random = 1446.13555108848, var.residual = 748.813858500395, var.distribution = 748.813858500395, var.dispersion = 0, var.slope = c( `Subject.Days2(-1,3]` = 663.27445659023, `Subject.Days2(3,6]` = 2098.24691538121, `Subject.Days2(6,10]` = 2722.20492158038 ), cor.slopes = c( `Subject.Days2(-1,3]-Days2(3,6]` = 0.796453122321232, `Subject.Days2(-1,3]-Days2(6,10]` = 0.732956077304911, `Subject.Days2(3,6]-Days2(6,10]` = 0.924018087860575 ) ), tolerance = 1e-2 ) }) test_that("get_variance-12", { model <- lme4::lmer(Reaction ~ Days2 + (0 + Days2 || Subject), data = study_data2) vmodel <- get_variance(model) expect_equal( vmodel, list( var.fixed = 807.085453556794, var.random = 1446.13555108848, var.residual = 748.813858500395, var.distribution = 748.813858500395, var.dispersion = 0, var.slope = c( `Subject.Days2(-1,3]` = 663.27445659023, `Subject.Days2(3,6]` = 2098.24691538121, `Subject.Days2(6,10]` = 2722.20492158038 ), cor.slopes = c( `Subject.Days2(-1,3]-Days2(3,6]` = 0.796453122321232, `Subject.Days2(-1,3]-Days2(6,10]` = 0.732956077304911, `Subject.Days2(3,6]-Days2(6,10]` = 0.924018087860575 ) ), tolerance = 1e-2 ) }) # test random slope correlation for categorical random slope test_that("get_variance-cat_random_slope", { data(cake, package = "lme4") suppressMessages({ m <- lme4::lmer(angle ~ temperature + (temperature | recipe), data = cake) }) vc <- suppressWarnings(get_variance(m)) expect_equal( vc$cor.slopes, c( `recipe.temperature.L-temperature.C` = 0.99999964, `recipe.temperature.Q-temperature.C` = 0.99999931, `recipe.temperature.L-temperature.Q` = 0.99999941, `recipe.temperature.L-temperature^4` = 0.99999961, `recipe.temperature.Q-temperature^4` = 0.99999912, `recipe.temperature.C-temperature^4` = 0.99999996, `recipe.temperature.L-temperature^5` = -0.99999977, `recipe.temperature.Q-temperature^5` = -0.99999849, `recipe.temperature.C-temperature^5` = -0.99999936, `recipe.temperature^4-temperature^5` = -0.99999941 ), tolerance = 1e-3 ) }) data(sleepstudy, package = "lme4") set.seed(123) sleepstudy$Months <- sample.int(4, nrow(sleepstudy), TRUE) study_data3 <<- sleepstudy m2 <- lme4::lmer(Reaction ~ Days + (0 + Days | Subject), data = study_data3) m5 <- lme4::lmer(Reaction ~ Days + (0 + Days + Months | Subject), data = study_data3) test_that("random effects CIs, simple slope", { vc <- suppressWarnings(get_variance(m2)) expect_named( vc, c( "var.fixed", "var.random", "var.residual", "var.distribution", "var.dispersion", "var.slope" ) ) }) test_that("random effects CIs, simple slope", { vc <- suppressWarnings(get_variance(m5)) expect_equal( vc, list( var.fixed = 921.929610133035, var.random = 1068.04697608476, var.residual = 764.479364064599, var.distribution = 764.479364064599, var.dispersion = 0, var.slope = c( Subject.Days = 37.4753324942022, Subject.Months = 27.6430649522841 ), cor.slopes = c(`Subject.Days-Months` = 0.455625778436967) ), tolerance = 1e-3, ignore_attr = TRUE ) }) test_that("random effects CIs, poly slope", { data(cake, package = "lme4") suppressMessages({ m <- lme4::lmer(angle ~ poly(temp, 2) + (poly(temp, 2) | replicate) + (1 | recipe), data = cake) }) vc <- suppressWarnings(get_variance(m)) expect_equal( vc$cor.slopes, c(`replicate.poly(temp, 2)1-poly(temp, 2)2` = 0.940016422944175), tolerance = 1e-3, ignore_attr = TRUE ) }) test_that("fixed effects variance for rank-deficient models, #765", { skip_if(getRversion() > "4.3.3") skip_if_not_installed("glmmTMB", minimum_version = "1.1.8") set.seed(101) dd <- data.frame( z = rnorm(1000), x1 = 1:1000, x2 = runif(1000, 0, 10), re = rep(1:20, each = 50) ) dd <- transform(dd, x3 = as.factor(ifelse( x1 <= 500, "Low", sample(c("Middle", "High"), 1000, replace = TRUE) ))) dd <- transform(dd, x4 = as.factor(ifelse( x1 > 500, "High", sample(c("Absent", "Low"), 1000, replace = TRUE) ))) dd <- transform(dd, z = z + re * 5) expect_message({ mod_TMB <- glmmTMB::glmmTMB( z ~ x1 + x2 + x3 + x4 + (1 | re), data = dd, start = list(theta = 3), control = glmmTMB::glmmTMBControl(rank_check = "adjust") ) }) out <- get_variance_fixed(mod_TMB) expect_equal(out, 627.04511567, tolerance = 1e-4, ignore_attr = TRUE) })