skip_if_offline() skip_if_not_installed("mgcv") skip_if_not_installed("httr") set.seed(123) void <- capture.output( dat2 <<- mgcv::gamSim(1, n = 400, dist = "normal", scale = 2) ) # data for model m3 V <- matrix(c(2, 1, 1, 2), 2, 2) f0 <- function(x) 2 * sin(pi * x) f1 <- function(x) exp(2 * x) f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 * x)^3 * (1 - x)^10 n <- 300 x0 <- runif(n) x1 <- runif(n) x2 <- runif(n) x3 <- runif(n) y <- matrix(0, n, 2) for (i in 1:n) { mu <- c(f0(x0[i]) + f1(x1[i]), f2(x2[i])) y[i, ] <- mgcv::rmvn(1, mu, V) } dat <<- data.frame(y0 = y[, 1], y1 = y[, 2], x0 = x0, x1 = x1, x2 = x2, x3 = x3) m1 <- mgcv::gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat2) m2 <- download_model("gam_zi_1") m3 <- download_model("gam_mv_1") skip_if(is.null(m2)) skip_if(is.null(m3)) test_that("model_info", { expect_true(model_info(m1)$is_linear) expect_true(model_info(m2)$is_count) expect_true(model_info(m3)$is_multivariate) }) test_that("n_parameters", { expect_equal(n_parameters(m1), 5) expect_equal(n_parameters(m1, component = "conditional"), 1) }) test_that("clean_names", { expect_equal(clean_names(m1), c("y", "x0", "x1", "x2", "x3")) expect_equal(clean_names(m2), c("y", "x2", "x3", "x0", "x1")) expect_equal(clean_names(m3), c("y0", "y1", "x0", "x1", "x2", "x3")) }) test_that("get_df", { expect_equal( get_df(m1, type = "residual"), df.residual(m1), ignore_attr = TRUE ) expect_equal( get_df(m1, type = "normal"), Inf, ignore_attr = TRUE ) expect_equal( get_df(m1, type = "wald"), 383.0491, ignore_attr = TRUE, tolerance = 1e-3 ) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = c("x0", "x1", "x2", "x3"))) expect_identical( find_predictors(m1, flatten = TRUE), c("x0", "x1", "x2", "x3") ) expect_null(find_predictors(m1, effects = "random")) expect_identical(find_predictors(m2), list(conditional = c("x2", "x3"), zero_inflated = c("x0", "x1"))) expect_identical(find_predictors(m2, flatten = TRUE), c("x2", "x3", "x0", "x1")) expect_null(find_predictors(m2, effects = "random")) expect_identical(find_predictors(m3), list(y0 = list(conditional = c("x0", "x1")), y1 = list(conditional = c("x2", "x3")))) expect_identical(find_predictors(m3, flatten = TRUE), c("x0", "x1", "x2", "x3")) expect_null(find_predictors(m3, effects = "random")) }) test_that("find_response", { expect_identical(find_response(m1), "y") expect_identical(find_response(m2), "y") expect_identical(find_response(m3), c(y0 = "y0", y1 = "y1")) }) test_that("find_smooth", { expect_identical(find_smooth(m1), list(smooth_terms = c("s(x0)", "s(x1)", "s(x2)", "s(x3)"))) }) test_that("get_call", { expect_identical(deparse(get_call(m1)), "mgcv::gam(formula = y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat2)") }) test_that("get_response", { expect_equal(get_response(m1), dat2$y, ignore_attr = TRUE) expect_length(get_response(m2), 500) expect_identical(ncol(get_response(m3)), 2L) }) test_that("link_inverse", { expect_equal(link_inverse(m1)(0.2), 0.2, tolerance = 1e-5) expect_equal(link_inverse(m2)(0.2), 0.2, tolerance = 1e-5) expect_equal(link_inverse(m3)(0.2), 0.2, tolerance = 1e-5) }) test_that("get_data", { expect_identical(nrow(get_data(m1, verbose = FALSE)), 400L) expect_identical(colnames(get_data(m1, verbose = FALSE)), c("y", "x0", "x1", "x2", "x3")) expect_identical(nrow(get_data(m2, verbose = FALSE)), 500L) expect_identical(colnames(get_data(m2, verbose = FALSE)), c("y", "x2", "x3", "x0", "x1")) expect_identical(nrow(get_data(m3, verbose = FALSE)), 300L) # extract data from environment allows us to keep additional variables miris <- mgcv::gam(Sepal.Length ~ s(Sepal.Width), data = iris) tmp <- get_data(miris, additional_variables = TRUE) expect_true("Petal.Width" %in% colnames(tmp)) }) test_that("find_formula", { expect_length(find_formula(m1), 1) expect_equal( find_formula(m1), list(conditional = as.formula("y ~ s(x0) + s(x1) + s(x2) + s(x3)")), ignore_attr = TRUE ) expect_length(find_formula(m2), 2) expect_equal( find_formula(m2), list( conditional = as.formula("y ~ s(x2) + s(x3)"), zero_inflated = as.formula("~s(x0) + s(x1)") ), ignore_attr = TRUE ) expect_length(find_formula(m3), 2) expect_equal( find_formula(m3), structure( list( y0 = list(conditional = as.formula("y0 ~ s(x0) + s(x1)")), y1 = list(conditional = as.formula("y1 ~ s(x2) + s(x3)")) ), is_mv = "1" ), ignore_attr = TRUE ) }) test_that("find_variables", { expect_identical(find_variables(m1), list(response = "y", conditional = c("x0", "x1", "x2", "x3"))) expect_identical(find_variables(m1, flatten = TRUE), c("y", "x0", "x1", "x2", "x3")) expect_identical(find_variables(m2), list(response = "y", conditional = c("x2", "x3"), zero_inflated = c("x0", "x1"))) expect_identical(find_variables(m2, flatten = TRUE), c("y", "x2", "x3", "x0", "x1")) expect_identical(find_variables(m3), list(response = c(y0 = "y0", y1 = "y1"), y0 = list(conditional = c("x0", "x1")), y1 = list(conditional = c("x2", "x3")))) expect_identical(find_variables(m3, flatten = TRUE), c("y0", "y1", "x0", "x1", "x2", "x3")) }) test_that("n_obs", { expect_identical(n_obs(m1), 400L) expect_identical(n_obs(m2), 500L) expect_identical(n_obs(m3), 300L) }) test_that("linkfun", { expect_false(is.null(link_function(m1))) }) test_that("find_parameters", { expect_identical( find_parameters(m1), list( conditional = "(Intercept)", smooth_terms = c("s(x0)", "s(x1)", "s(x2)", "s(x3)") ) ) expect_identical(nrow(get_parameters(m1)), 5L) expect_identical( get_parameters(m1)$Parameter, c("(Intercept)", "s(x0)", "s(x1)", "s(x2)", "s(x3)") ) expect_identical(nrow(get_parameters(m1, "smooth_terms")), 4L) expect_identical( find_parameters(m2), list( conditional = c("(Intercept)", "(Intercept).1"), smooth_terms = c("s(x2)", "s(x3)", "s.1(x0)", "s.1(x1)") ) ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) expect_false(is_multivariate(m2)) expect_true(is_multivariate(m3)) }) test_that("find_terms", { expect_identical( find_terms(m1), list( response = "y", conditional = c("s(x0)", "s(x1)", "s(x2)", "s(x3)") ) ) expect_identical( find_terms(m2), list( response = "y", conditional = c("s(x2)", "s(x3)"), zero_inflated = c("s(x0)", "s(x1)") ) ) expect_identical( find_terms(m3), list( y0 = list(response = "y0", conditional = c("s(x0)", "s(x1)")), y1 = list(response = "y1", conditional = c("s(x2)", "s(x3)")) ) ) }) test_that("find_algorithm", { expect_identical( find_algorithm(m1), list(algorithm = "GCV", optimizer = "magic") ) }) test_that("find_statistic", { expect_identical(find_statistic(m1), "t-statistic") }) test_that("get_parameters works for gams without smooth or smooth only", { set.seed(123) dat <- mgcv::gamSim(1, n = 400, dist = "normal", scale = 2, verbose = FALSE) b <- mgcv::gam(y ~ s(x0) + s(x1) - 1, data = dat) out <- get_parameters(b) expect_equal(out$Estimate, c(1.501, 1.2384), tolerance = 1e-3) expect_identical(out$Parameter, c("s(x0)", "s(x1)")) out <- get_statistic(b) expect_equal(out$Statistic, c(0.5319, 14.2444), tolerance = 1e-3) expect_identical(out$Parameter, c("s(x0)", "s(x1)")) out <- get_parameters(b, component = "conditional") expect_null(out) out <- get_parameters(b, component = "smooth_terms") expect_equal(out$Estimate, c(1.501, 1.2384), tolerance = 1e-3) expect_identical(out$Parameter, c("s(x0)", "s(x1)")) b <- mgcv::gam(y ~ x0 + x1, data = dat) out <- get_parameters(b) expect_equal(out$Estimate, c(4.5481, 0.4386, 6.4379), tolerance = 1e-3) expect_identical(out$Parameter, c("(Intercept)", "x0", "x1")) out <- get_statistic(b) expect_equal(out$Statistic, c(9.9086, 0.7234, 10.9056), tolerance = 1e-3) expect_identical(out$Parameter, c("(Intercept)", "x0", "x1")) out <- get_parameters(b, component = "conditional") expect_equal(out$Estimate, c(4.5481, 0.4386, 6.4379), tolerance = 1e-3) expect_identical(out$Parameter, c("(Intercept)", "x0", "x1")) out <- get_parameters(b, component = "smooth_terms") expect_null(out) }) test_that("get_predicted", { # dat3 <- head(dat, 30) # tmp <- mgcv::gam(y ~ s(x0) + s(x1), data = dat3) # pred <- get_predicted(tmp, verbose = FALSE, ci = 0.95) # expect_s3_class(pred, "get_predicted") # expect_equal( # as.vector(pred), # c( # 11.99341, 5.58098, 10.89252, 7.10335, 5.94836, 6.5724, 8.5054, # 5.47147, 5.9343, 8.27001, 5.71199, 9.94999, 5.69979, 6.63532, # 6.00475, 5.58633, 11.54848, 6.1083, 6.6151, 5.37164, 6.86236, # 7.80726, 7.38088, 5.70664, 10.60654, 7.62847, 5.8596, 6.06744, # 5.81571, 10.4606 # ), # tolerance = 1e-3 # ) # x <- get_predicted(tmp, predict = NULL, type = "link", ci = 0.95) # y <- get_predicted(tmp, predict = "link", ci = 0.95) # z <- predict(tmp, type = "link", se.fit = TRUE) # expect_equal(x, y) # expect_equal(x, z$fit, ignore_attr = TRUE) # expect_equal(as.data.frame(x)$SE, z$se.fit, ignore_attr = TRUE) # x <- get_predicted(tmp, predict = NULL, type = "response", verbose = FALSE, ci = 0.95) # y <- get_predicted(tmp, predict = "expectation", ci = 0.95) # z <- predict(tmp, type = "response", se.fit = TRUE) # expect_equal(x, y, ignore_attr = TRUE) # expect_equal(x, z$fit, ignore_attr = TRUE) # expect_equal(as.data.frame(x)$SE, z$se.fit, ignore_attr = TRUE) # poisson void <- capture.output( dat <<- mgcv::gamSim(1, n = 400, dist = "poisson", scale = 0.25) ) b4 <- mgcv::gam( y ~ s(x0) + s(x1) + s(x2) + s(x3), family = poisson, data = dat, method = "GACV.Cp", scale = -1 ) d <- get_datagrid(b4, at = "x1") p1 <- get_predicted(b4, data = d, predict = "expectation", ci = 0.95) p2 <- predict(b4, newdata = d, type = "response") expect_equal(as.vector(p1), as.vector(p2), tolerance = 1e-4, ignore_attr = TRUE) p1 <- get_predicted(b4, data = d, predict = "link", ci = 0.95) p2 <- predict(b4, newdata = d, type = "link") expect_equal(as.vector(p1), as.vector(p2), tolerance = 1e-4, ignore_attr = TRUE) p1 <- get_predicted(b4, data = d, type = "link", predict = NULL, ci = 0.95) p2 <- predict(b4, newdata = d, type = "link") expect_equal(as.vector(p1), as.vector(p2), tolerance = 1e-4, ignore_attr = TRUE) p1 <- get_predicted(b4, data = d, type = "response", predict = NULL, ci = 0.95) p2 <- predict(b4, newdata = d, type = "response") expect_equal(as.vector(p1), as.vector(p2), tolerance = 1e-4, ignore_attr = TRUE) void <- capture.output( dat <<- mgcv::gamSim(1, n = 400, dist = "poisson", scale = 0.25) ) b4 <- mgcv::gam( y ~ s(x0) + s(x1) + s(x2) + s(x3), family = poisson, data = dat, method = "GACV.Cp", scale = -1 ) # exclude argument should be pushed through ... p1 <- predict(b4, type = "response", exclude = "s(x1)") p2 <- get_predicted(b4, predict = "expectation", exclude = "s(x1)", ci = 0.95) expect_equal(as.vector(p1), as.vector(p2), tolerance = 1e-4, ignore_attr = TRUE) p1 <- predict(b4, type = "link", exclude = "s(x1)") p2 <- get_predicted(b4, predict = "link", exclude = "s(x1)", ci = 0.95) expect_equal(as.vector(p1), as.vector(p2), tolerance = 1e-4, ignore_attr = TRUE) }) test_that("stats::predict.Gam matches get_predicted.Gam", { skip_if_not_installed("gam") data(kyphosis, package = "gam") tmp <<- kyphosis mod <- gam::gam(Kyphosis ~ gam::s(Age, 4) + Number, family = binomial, data = tmp) p1 <- get_predicted(mod, predict = "link") p2 <- predict(mod, type = "link") expect_equal(as.vector(p1), p2, ignore_attr = TRUE) p1 <- get_predicted(mod, predict = "expectation") p2 <- predict(mod, type = "response") expect_equal(as.vector(p1), p2, ignore_attr = TRUE) })