skip_on_os("mac") skip_if(getRversion() < "3.6.0") skip_if_not_installed("fixest") skip_if_not_installed("carData") # avoid warnings fixest::setFixest_nthreads(1) data(trade, package = "fixest") data(Greene, package = "carData") m1 <- fixest::femlm(Euros ~ log(dist_km) | Origin + Destination + Product, data = trade) m2 <- fixest::femlm(log1p(Euros) ~ log(dist_km) | Origin + Destination + Product, data = trade, family = "gaussian") m3 <- fixest::feglm(Euros ~ log(dist_km) | Origin + Destination + Product, data = trade, family = "poisson") m4 <- fixest::feols( Sepal.Width ~ Petal.Length | Species | Sepal.Length ~ Petal.Width, data = iris ) test_that("robust variance-covariance", { mod <- fixest::feols(mpg ~ hp + drat | cyl, data = mtcars) # default is clustered expect_equal( sqrt(diag(vcov(mod))), sqrt(diag(get_varcov(mod, vcov = ~cyl))), tolerance = 1e-5, ignore_attr = TRUE ) # HC1 expect_equal( sqrt(diag(vcov(mod, vcov = "HC1"))), sqrt(diag(get_varcov(mod, vcov = "HC1"))), tolerance = 1e-5, ignore_attr = TRUE ) expect_true(all( sqrt(diag(vcov(mod))) != sqrt(diag(get_varcov(mod, vcov = "HC1"))) )) }) test_that("offset", { tmp <- fixest::feols(mpg ~ hp, offset = ~ log(qsec), data = mtcars) expect_identical(find_offset(tmp), "qsec") tmp <- fixest::feols(mpg ~ hp, offset = ~qsec, data = mtcars) expect_identical(find_offset(tmp), "qsec") }) test_that("model_info", { expect_true(model_info(m1)$is_count) expect_true(model_info(m2)$is_linear) expect_true(model_info(m3)$is_count) }) test_that("find_predictors", { expect_identical(find_predictors(m1), list(conditional = "dist_km", cluster = c("Origin", "Destination", "Product"))) expect_identical(find_predictors(m2), list(conditional = "dist_km", cluster = c("Origin", "Destination", "Product"))) expect_identical(find_predictors(m3), list(conditional = "dist_km", cluster = c("Origin", "Destination", "Product"))) expect_identical(find_predictors(m4), list( conditional = c("Petal.Length", "Sepal.Length"), cluster = "Species", instruments = "Petal.Width", endogenous = "Sepal.Length" )) expect_identical( find_predictors(m1, component = "all"), list(conditional = "dist_km", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_predictors(m2, component = "all"), list(conditional = "dist_km", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_predictors(m3, component = "all"), list(conditional = "dist_km", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_predictors(m4, component = "all"), list( conditional = c("Petal.Length", "Sepal.Length"), cluster = "Species", instruments = "Petal.Width", endogenous = "Sepal.Length" ) ) }) test_that("find_random", { expect_null(find_random(m1)) expect_null(find_random(m2)) expect_null(find_random(m3)) }) test_that("get_varcov", { expect_equal(vcov(m1), get_varcov(m1), tolerance = 1e-3) expect_equal(vcov(m4), get_varcov(m4), tolerance = 1e-3) }) test_that("get_random", { expect_warning(expect_null(get_random(m1))) }) test_that("find_response", { expect_identical(find_response(m1), "Euros") expect_identical(find_response(m2), "Euros") expect_identical(find_response(m3), "Euros") }) test_that("get_response", { expect_equal(get_response(m1), trade$Euros, ignore_attr = TRUE) expect_equal(get_response(m2), trade$Euros, ignore_attr = TRUE) expect_equal(get_response(m3), trade$Euros, ignore_attr = TRUE) }) test_that("get_predictors", { expect_identical(colnames(get_predictors(m1)), c("dist_km", "Origin", "Destination", "Product")) expect_identical(colnames(get_predictors(m2)), c("dist_km", "Origin", "Destination", "Product")) expect_identical(colnames(get_predictors(m3)), c("dist_km", "Origin", "Destination", "Product")) }) test_that("link_inverse", { expect_equal(link_inverse(m1)(0.2), exp(0.2), tolerance = 1e-4) expect_equal(link_inverse(m2)(0.2), 0.2, tolerance = 1e-4) expect_equal(link_inverse(m3)(0.2), exp(0.2), tolerance = 1e-4) }) test_that("link_function", { expect_equal(link_function(m1)(0.2), log(0.2), tolerance = 1e-4) expect_equal(link_function(m2)(0.2), 0.2, tolerance = 1e-4) expect_equal(link_function(m3)(0.2), log(0.2), tolerance = 1e-4) }) test_that("get_data", { expect_identical(nrow(get_data(m1, verbose = FALSE)), 38325L) expect_identical(colnames(get_data(m1, verbose = FALSE)), c("Euros", "dist_km", "Origin", "Destination", "Product")) expect_identical(nrow(get_data(m2, verbose = FALSE)), 38325L) expect_identical(colnames(get_data(m2, verbose = FALSE)), c("Euros", "dist_km", "Origin", "Destination", "Product")) # old bug: m4 uses a complex formula and we need to extract all relevant # variables in order to compute predictions. nd <- get_data(m4, verbose = FALSE) tmp <- predict(m4, newdata = nd) expect_type(tmp, "double") expect_length(tmp, nrow(iris)) }) skip_if_not_installed("parameters") test_that("get_df", { expect_equal(get_df(m1, type = "residual"), fixest::degrees_freedom(m1, type = "resid"), ignore_attr = TRUE) expect_equal(get_df(m1, type = "normal"), Inf, ignore_attr = TRUE) ## statistic is t for this model expect_equal(get_df(m1, type = "wald"), fixest::degrees_freedom(m1, type = "t"), ignore_attr = TRUE) }) test_that("find_formula", { expect_length(find_formula(m1), 2) expect_equal( find_formula(m1), list( conditional = as.formula("Euros ~ log(dist_km)"), cluster = as.formula("~Origin + Destination + Product") ), ignore_attr = TRUE ) expect_length(find_formula(m2), 2) expect_equal( find_formula(m2), list( conditional = as.formula("log1p(Euros) ~ log(dist_km)"), cluster = as.formula("~Origin + Destination + Product") ), ignore_attr = TRUE ) }) test_that("find_terms", { expect_identical( find_terms(m1), list(response = "Euros", conditional = "log(dist_km)", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_terms(m1, flatten = TRUE), c("Euros", "log(dist_km)", "Origin", "Destination", "Product") ) expect_identical( find_terms(m2), list(response = "log1p(Euros)", conditional = "log(dist_km)", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_terms(m2, flatten = TRUE), c("log1p(Euros)", "log(dist_km)", "Origin", "Destination", "Product") ) }) test_that("find_variables", { expect_identical( find_variables(m1), list(response = "Euros", conditional = "dist_km", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_variables(m1, flatten = TRUE), c("Euros", "dist_km", "Origin", "Destination", "Product") ) expect_identical( find_variables(m2), list(response = "Euros", conditional = "dist_km", cluster = c("Origin", "Destination", "Product")) ) expect_identical( find_variables(m1, flatten = TRUE), c("Euros", "dist_km", "Origin", "Destination", "Product") ) }) test_that("n_obs", { expect_identical(n_obs(m1), 38325L) expect_identical(n_obs(m2), 38325L) }) test_that("find_parameters", { expect_identical( find_parameters(m1), list(conditional = "log(dist_km)") ) expect_equal( get_parameters(m1), data.frame( Parameter = "log(dist_km)", Estimate = -1.52774702640008, row.names = NULL, stringsAsFactors = FALSE ), tolerance = 1e-4 ) expect_identical( find_parameters(m2), list(conditional = "log(dist_km)") ) expect_equal( get_parameters(m2), data.frame( Parameter = "log(dist_km)", Estimate = -2.16843021944503, row.names = NULL, stringsAsFactors = FALSE ), tolerance = 1e-4 ) }) test_that("is_multivariate", { expect_false(is_multivariate(m1)) }) test_that("find_statistic", { # see https://github.com/easystats/parameters/issues/892#issuecomment-1712645841 # and https://github.com/lrberge/fixest/blob/c14c55917897478d996f80bd3392d2e7355b1f29/R/ESTIMATION_FUNS.R#L2903 d <- Greene d$dv <- as.numeric(Greene$decision == "yes") m5 <- fixest::feglm(dv ~ language | judge, data = d, cluster = "judge", family = "logit" ) expect_identical(find_statistic(m1), "z-statistic") expect_identical(find_statistic(m2), "t-statistic") expect_identical(find_statistic(m3), "z-statistic") expect_identical(find_statistic(m4), "t-statistic") expect_identical(find_statistic(m5), "z-statistic") }) test_that("get_statistic", { stat <- get_statistic(m1) out <- as.data.frame(summary(m1)$coeftable) expect_equal(stat$Statistic, out[, "t value"], tolerance = 1e-3, ignore_attr = TRUE) stat <- get_statistic(m2) out <- as.data.frame(summary(m2)$coeftable) expect_equal(stat$Statistic, out[, "t value"], tolerance = 1e-3, ignore_attr = TRUE) stat <- get_statistic(m3) out <- as.data.frame(summary(m3)$coeftable) expect_equal(stat$Statistic, out[, "t value"], tolerance = 1e-3, ignore_attr = TRUE) }) test_that("get_predicted", { pred <- get_predicted(m1) expect_s3_class(pred, "get_predicted") expect_length(pred, nrow(trade)) a <- get_predicted(m1) b <- get_predicted(m1, type = "response", predict = NULL) expect_equal(a, b, tolerance = 1e-5) a <- get_predicted(m1, predict = "link") b <- get_predicted(m1, type = "link", predict = NULL) expect_equal(a, b, tolerance = 1e-5) # these used to raise warnings expect_warning(get_predicted(m1, ci = 0.4), NA) expect_warning(get_predicted(m1, predict = NULL, type = "link"), NA) }) test_that("get_data works when model data has name of reserved words", { ## NOTE check back every now and then and see if tests still work skip("works interactively") rep <- data.frame(Y = runif(100) > 0.5, X = rnorm(100)) m <- fixest::feglm(Y ~ X, data = rep, family = binomial) out <- get_data(m) expect_s3_class(out, "data.frame") expect_equal( head(out), structure( list( Y = c(TRUE, TRUE, TRUE, TRUE, FALSE, FALSE), X = c( -1.37601434046896, -0.0340090992175856, 0.418083058388383, -0.51688491498936, -1.30634551903768, -0.858343109785566 ) ), is_subset = FALSE, row.names = c(NA, 6L), class = "data.frame" ), ignore_attr = TRUE, tolerance = 1e-3 ) }) test_that("find_variables with interaction", { mod <- suppressMessages(fixest::feols(mpg ~ 0 | carb | vs:cyl ~ am:cyl, data = mtcars)) expect_equal( find_variables(mod), list( response = "mpg", conditional = "vs", cluster = "carb", instruments = c("am", "cyl"), endogenous = c("vs", "cyl") ), ignore_attr = TRUE ) # used to produce a warning mod <- fixest::feols(mpg ~ 0 | carb | vs:cyl ~ am:cyl, data = mtcars) expect_warning(find_variables(mod), NA) }) test_that("find_predictors with i(f1, i.f2) interaction", { aq <- airquality aq$week <- aq$Day %/% 7 + 1 mod <- fixest::feols(Ozone ~ i(Month, i.week), aq, notes = FALSE) expect_equal( find_predictors(mod), list( conditional = c("Month", "week") ), ignore_attr = TRUE ) })