skip_if_offline() skip_if_not_installed("GLMMadaptive") skip_if_not_installed("lme4") skip_if_not_installed("httr") m <- download_model("GLMMadaptive_zi_2") m2 <- download_model("GLMMadaptive_zi_1") skip_if(is.null(m)) skip_if(is.null(m2)) data(cbpp, package = "lme4") tmp <<- cbpp m3 <- GLMMadaptive::mixed_model( cbind(incidence, size - incidence) ~ period, random = ~ 1 | herd, data = tmp, family = binomial ) test_that("model_info", { expect_true(model_info(m)$is_zero_inflated) expect_true(model_info(m)$is_count) expect_true(model_info(m)$is_pois) expect_false(model_info(m)$is_negbin) expect_false(model_info(m)$is_linear) }) test_that("get_deviance + logLik", { expect_equal(get_deviance(m3), 183.96674, tolerance = 1e-3) expect_equal(get_loglikelihood(m3), logLik(m3), tolerance = 1e-3, ignore_attr = TRUE) expect_identical(get_df(m3, type = "model"), 5L) }) test_that("get_df", { expect_equal( get_df(m3, type = "residual"), 51, ignore_attr = TRUE ) expect_equal( get_df(m3, type = "normal"), Inf, ignore_attr = TRUE ) expect_equal( get_df(m3, type = "wald"), Inf, ignore_attr = TRUE ) }) test_that("n_parameters", { expect_identical(n_parameters(m), 6L) expect_identical(n_parameters(m2), 6L) expect_identical(n_parameters(m, effects = "random"), 2L) expect_identical(n_parameters(m2, effects = "random"), 1L) }) test_that("find_predictors", { expect_identical( find_predictors(m, effects = "fixed")$conditional, c("child", "camper") ) expect_identical( find_predictors(m, effects = "fixed")$zero_inflated, c("child", "livebait") ) expect_identical( find_predictors(m, effects = "all", flatten = TRUE), c("child", "camper", "persons", "livebait") ) expect_identical( find_predictors(m, effects = "all")$zero_inflated_random, "persons" ) expect_identical(find_predictors(m, effects = "random")$random, "persons") expect_identical( find_predictors( m, effects = "fixed", component = "cond", flatten = TRUE ), c("child", "camper") ) expect_identical( find_predictors( m, effects = "all", component = "cond", flatten = TRUE ), c("child", "camper", "persons") ) expect_identical( find_predictors(m, effects = "all", component = "cond")$conditional, c("child", "camper") ) expect_identical( find_predictors( m, effects = "random", component = "cond", flatten = TRUE ), "persons" ) expect_identical( find_predictors( m, effects = "fixed", component = "zi", flatten = TRUE ), c("child", "livebait") ) expect_identical( find_predictors( m, effects = "all", component = "zi", flatten = TRUE ), c("child", "livebait", "persons") ) expect_identical( find_predictors( m, effects = "random", component = "zi", flatten = TRUE ), "persons" ) expect_null(find_predictors( m, effects = "fixed", component = "dispersion", flatten = TRUE )) expect_null(find_predictors( m, effects = "all", component = "dispersion", flatten = TRUE )) expect_null(find_predictors( m, effects = "random", component = "dispersion", flatten = TRUE )) }) test_that("find_response", { expect_identical(find_response(m), "count") }) test_that("link_inverse", { expect_identical(link_inverse(m)(0.2), exp(0.2)) }) test_that("clean_names", { expect_identical( clean_names(m), c("count", "child", "camper", "persons", "livebait") ) }) test_that("find_formula", { expect_length(find_formula(m), 4) expect_named( find_formula(m), c( "conditional", "random", "zero_inflated", "zero_inflated_random" ) ) }) test_that("find_random", { expect_identical( find_random(m), list(random = "persons", zero_inflated_random = "persons") ) expect_identical(find_random(m, flatten = TRUE), "persons") }) test_that("find_respone", { expect_identical(find_response(m), "count") }) test_that("find_terms", { expect_identical( find_terms(m), list( response = "count", conditional = c("child", "camper"), random = "persons", zero_inflated = c("child", "livebait"), zero_inflated_random = "persons" ) ) expect_identical( find_terms(m, flatten = TRUE), c("count", "child", "camper", "persons", "livebait") ) }) test_that("get_response", { expect_identical(get_response(m3), cbpp[, c("incidence", "size")]) }) test_that("get_predictors", { expect_identical( colnames(get_predictors(m)), c("child", "camper", "livebait") ) }) test_that("get_random", { expect_identical(colnames(get_random(m)), "persons") }) # data stems from model frame, since we downloaded models, so it's not # in the environment. Thus, "get_data()" throws warning, and we therefore # set verbose = FALSE test_that("get_data", { expect_identical( sort(colnames(get_data(m, verbose = FALSE))), sort(c("count", "child", "camper", "livebait", "persons")) ) expect_identical( colnames(get_data(m, effects = "fixed", verbose = FALSE)), c("count", "child", "camper", "livebait") ) expect_identical(colnames(get_data(m, effects = "random", verbose = FALSE)), "persons") expect_identical( sort(colnames(get_data(m, component = "zi", verbose = FALSE))), sort(c("count", "child", "livebait", "persons")) ) expect_identical( sort(colnames(get_data(m, component = "zi", effects = "fixed", verbose = FALSE))), sort(c("count", "child", "livebait")) ) expect_identical(colnames(get_data( m, component = "zi", effects = "random", verbose = FALSE )), "persons") expect_identical( colnames(get_data(m, component = "cond", verbose = FALSE)), c("count", "child", "camper", "persons") ) expect_identical(colnames(get_data( m, component = "cond", effects = "fixed", verbose = FALSE )), c("count", "child", "camper")) expect_identical(colnames(get_data( m, component = "cond", effects = "random", verbose = FALSE )), "persons") expect_identical(colnames(suppressWarnings(get_data(m, component = "dispersion"))), "count") expect_null(suppressWarnings(get_data(m, component = "dispersion", effects = "random", verbose = FALSE))) expect_identical( colnames(get_data(m3)), c("incidence", "size", "period", "herd") ) }) test_that("find_parameter", { expect_identical( find_parameters(m), list( conditional = c("(Intercept)", "child", "camper1"), random = "(Intercept)", zero_inflated = c("(Intercept)", "child", "livebait1"), zero_inflated_random = "zi_(Intercept)" ) ) expect_identical( find_parameters(m2), list( conditional = c("(Intercept)", "child", "camper1"), random = "(Intercept)", zero_inflated = c("(Intercept)", "child", "livebait1") ) ) expect_identical( find_parameters(m3), list( conditional = c("(Intercept)", "period2", "period3", "period4"), random = "(Intercept)" ) ) expect_identical(nrow(get_parameters(m)), 6L) expect_equal( get_parameters(m, effects = "random"), list( random = c(-1.0715496, 1.4083630, 1.9129880, 0.2007521), zero_inflated_random = c(-0.1676294, 0.5502481, 1.2592406, 0.9336591) ), tolerance = 1e-5 ) expect_identical(nrow(get_parameters(m2)), 6L) expect_equal(get_parameters(m2, effects = "random"), list(random = c( -1.3262364, -0.2048055, 1.3852572, 0.5282277 )), tolerance = 1e-5 ) expect_identical( get_parameters(m3)$Component, c( "conditional", "conditional", "conditional", "conditional" ) ) expect_error(get_parameters(m3, "zi")) }) test_that("linkfun", { expect_false(is.null(link_function(m))) expect_false(is.null(link_function(m2))) }) test_that("is_multivariate", { expect_false(is_multivariate(m)) expect_false(is_multivariate(m2)) }) test_that("find_algorithm", { expect_identical( find_algorithm(m), list(algorithm = "quasi-Newton", optimizer = "optim") ) })