test_that("IntegratedGradient: General errors", { library(keras) library(torch) data <- matrix(rnorm(4 * 10), nrow = 10) model <- keras_model_sequential() model %>% layer_dense(units = 16, activation = "relu", input_shape = c(4)) %>% layer_dense(units = 8, activation = "relu") %>% layer_dense(units = 3, activation = "softmax") converter <- Converter$new(model) expect_error(IntegratedGradient$new(model, data)) expect_error(IntegratedGradient$new(converter, model)) expect_error(IntegratedGradient$new(converter, data, channels_first = NULL)) expect_error(IntegratedGradient$new(converter, data, times_input = "asdf")) expect_error(IntegratedGradient$new(converter, data, x_ref = "asdf")) expect_error(IntegratedGradient$new(converter, data, n = "asdf")) expect_error(IntegratedGradient$new(converter, data, dtype = NULL)) expect_error(IntegratedGradient$new(converter, data, ignore_last_act = c(1))) }) test_that("IntegratedGradient: Plot and Boxplot", { library(neuralnet) library(torch) data(iris) data <- iris[sample.int(150, size = 10), -5] nn <- neuralnet(Species ~ ., iris, linear.output = FALSE, hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5 ) # create an converter for this model converter <- Converter$new(nn) ig <- IntegratedGradient$new(converter, data, dtype = "double", ignore_last_act = FALSE ) # ggplot2 # Non-existing data points expect_error(plot(ig, data_idx = c(1,11))) expect_error(boxplot(ig, data_idx = 1:11)) # Non-existing class expect_error(plot(ig, output_idx = c(5))) expect_error(boxplot(ig, output_idx = c(5))) p <- plot(ig) boxp <- boxplot(ig) expect_s4_class(p, "innsight_ggplot2") expect_s4_class(boxp, "innsight_ggplot2") p <- plot(ig, data_idx = 1:3) boxp <- boxplot(ig, data_idx = 1:4) expect_s4_class(p, "innsight_ggplot2") expect_s4_class(boxp, "innsight_ggplot2") p <- plot(ig, data_idx = 1:3, output_idx = 1:3) boxp <- boxplot(ig, data_idx = 1:5, output_idx = 1:3) expect_s4_class(p, "innsight_ggplot2") expect_s4_class(boxp, "innsight_ggplot2") # plotly library(plotly) p <- plot(ig, as_plotly = TRUE) boxp <- boxplot(ig, as_plotly = TRUE) expect_s4_class(p, "innsight_plotly") expect_s4_class(boxp, "innsight_plotly") p <- plot(ig, data_idx = 1:3, as_plotly = TRUE) boxp <- boxplot(ig, data_idx = 1:4, as_plotly = TRUE) expect_s4_class(p, "innsight_plotly") expect_s4_class(boxp, "innsight_plotly") p <- plot(ig, data_idx = 1:3, output_idx = 1:3, as_plotly = TRUE) boxp <- boxplot(ig, data_idx = 1:5, output_idx = 1:3, as_plotly = TRUE) expect_s4_class(p, "innsight_plotly") expect_s4_class(boxp, "innsight_plotly") }) test_that("IntegratedGradient: Dense-Net (Neuralnet)", { library(neuralnet) library(torch) data(iris) data <- iris[sample.int(150, size = 10), -5] nn <- neuralnet(Species ~ ., iris, linear.output = FALSE, hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5 ) # create an converter for this model converter <- Converter$new(nn) x_ref <- matrix(rnorm(4), nrow = 1) # ignore last activation ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, ignore_last_act = FALSE) int_grad <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad), c(10, 4, 3)) # include last activation ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, ignore_last_act = TRUE) int_grad_no_last_act <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad_no_last_act), c(10, 4, 3)) # not times input ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, times_input = FALSE, ignore_last_act = TRUE) int_grad_no_times_input <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad_no_times_input), c(10, 4, 3)) }) test_that("IntegratedGradient: Dense-Net (keras)", { library(keras) library(torch) data <- matrix(rnorm(4 * 10), nrow = 10) model <- keras_model_sequential() model %>% layer_dense(units = 16, activation = "relu", input_shape = c(4)) %>% layer_dense(units = 8, activation = "tanh") %>% layer_dense(units = 3, activation = "softmax") converter <- Converter$new(model) x_ref <- matrix(rnorm(4), nrow = 1) # ignore last activation ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, ignore_last_act = FALSE) int_grad <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad), c(10, 4, 3)) # not times input ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, times_input = FALSE, ignore_last_act = TRUE) int_grad_no_times_input <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad_no_times_input), c(10, 4, 3)) }) test_that("IntegratedGradient: Conv1D-Net", { library(keras) library(torch) data <- array(rnorm(4 * 64 * 3), dim = c(4, 64, 3)) model <- keras_model_sequential() model %>% layer_conv_1d( input_shape = c(64, 3), kernel_size = 16, filters = 8, activation = "softplus" ) %>% layer_conv_1d(kernel_size = 16, filters = 4, activation = "tanh") %>% layer_conv_1d(kernel_size = 16, filters = 2, activation = "relu") %>% layer_flatten() %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 16, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") # test non-fitted model converter <- Converter$new(model) x_ref <- array(rnorm(64 * 3), dim = c(1, 64, 3)) # ignore last activation ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, channels_first = FALSE, ignore_last_act = FALSE) int_grad <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad), c(4, 64, 3, 1)) # not times input ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, times_input = FALSE, channels_first = FALSE, ignore_last_act = TRUE) int_grad_no_times_input <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad_no_times_input), c(4, 64, 3, 1)) }) test_that("IntegratedGradient: Conv2D-Net", { library(keras) library(torch) data <- array(rnorm(4 * 32 * 32 * 3), dim = c(4, 32, 32, 3)) model <- keras_model_sequential() model %>% layer_conv_2d( input_shape = c(32, 32, 3), kernel_size = 8, filters = 8, activation = "softplus", padding = "same" ) %>% layer_conv_2d( kernel_size = 8, filters = 4, activation = "tanh", padding = "same" ) %>% layer_conv_2d( kernel_size = 4, filters = 2, activation = "relu", padding = "same" ) %>% layer_flatten() %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 16, activation = "relu") %>% layer_dense(units = 2, activation = "softmax") # test non-fitted model converter <- Converter$new(model) x_ref <- array(rnorm(32 * 32 * 3), dim = c(1, 32, 32, 3)) # ignore last activation ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, channels_first = FALSE, ignore_last_act = FALSE) int_grad <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad), c(4, 32, 32, 3, 2)) # not times input ig <- IntegratedGradient$new(converter, data, x_ref = x_ref, times_input = FALSE, channels_first = FALSE, ignore_last_act = TRUE) int_grad_no_times_input <- ig$get_result(type = "torch.tensor") expect_equal(dim(int_grad_no_times_input), c(4, 32, 32, 3, 2)) }) test_that("IntegratedGradient: Keras model with two inputs + two outputs (concat)", { library(keras) main_input <- layer_input(shape = c(10,10,2), name = 'main_input') lstm_out <- main_input %>% layer_conv_2d(2, c(2,2), activation = "relu") %>% layer_flatten() %>% layer_dense(units = 4) auxiliary_input <- layer_input(shape = c(5), name = 'aux_input') auxiliary_output <- layer_concatenate(c(lstm_out, auxiliary_input)) %>% layer_dense(units = 2, activation = 'relu', name = 'aux_output') main_output <- layer_concatenate(c(lstm_out, auxiliary_input)) %>% layer_dense(units = 5, activation = 'relu') %>% layer_dense(units = 3, activation = 'tanh', name = 'main_output') model <- keras_model( inputs = c(auxiliary_input, main_input), outputs = c(auxiliary_output, main_output) ) converter <- Converter$new(model) # Check IntegratedGradient with ignoring last activation data <- lapply(list(c(5), c(10,10,2)), function(x) array(rnorm(10 * prod(x)), dim = c(10, x))) x_ref <- lapply(list(c(5), c(10,10,2)), function(x) array(rnorm(10 * prod(x)), dim = c(1, x))) int_grad <- IntegratedGradient$new(converter, data, x_ref = x_ref, channels_first = FALSE, output_idx = list(c(2), c(1,3))) result <- int_grad$get_result() expect_equal(length(result), 2) expect_equal(length(result[[1]]), 2) expect_equal(dim(result[[1]][[1]]), c(10,5,1)) expect_equal(dim(result[[1]][[2]]), c(10,10,10,2,1)) expect_equal(length(result[[2]]), 2) expect_equal(dim(result[[2]][[1]]), c(10,5,2)) expect_equal(dim(result[[2]][[2]]), c(10,10,10,2,2)) # Check IntegratedGradient without times_input and ignoring last activation data <- lapply(list(c(5), c(10,10,2)), function(x) array(rnorm(10 * prod(x)), dim = c(10, x))) x_ref <- lapply(list(c(5), c(10,10,2)), function(x) array(rnorm(10 * prod(x)), dim = c(1, x))) int_grad <- IntegratedGradient$new(converter, data, x_ref = x_ref, channels_first = FALSE, times_input = FALSE, output_idx = list(c(1), c(1,2))) result <- int_grad$get_result() expect_equal(length(result), 2) expect_equal(length(result[[1]]), 2) expect_equal(dim(result[[1]][[1]]), c(10,5,1)) expect_equal(dim(result[[1]][[2]]), c(10,10,10,2,1)) expect_equal(length(result[[2]]), 2) expect_equal(dim(result[[2]][[1]]), c(10,5,2)) expect_equal(dim(result[[2]][[2]]), c(10,10,10,2,2)) }) test_that("IntegratedGradient: Keras model with three inputs + one output (add)", { library(keras) input_1 <- layer_input(shape = c(12,15,3)) part_1 <- input_1 %>% layer_conv_2d(3, c(4,4), activation = "relu", use_bias = FALSE) %>% layer_conv_2d(2, c(3,3), activation = "relu", use_bias = FALSE) %>% layer_flatten() %>% layer_dense(20, activation = "relu", use_bias = FALSE) input_2 <- layer_input(shape = c(10)) part_2 <- input_2 %>% layer_dense(50, activation = "tanh", use_bias = FALSE) input_3 <- layer_input(shape = c(20)) part_3 <- input_3 %>% layer_dense(40, activation = "relu", use_bias = FALSE) output <- layer_concatenate(c(part_1, part_3, part_2)) %>% layer_dense(100, activation = "relu", use_bias = FALSE) %>% layer_dense(1, activation = "linear", use_bias = FALSE) model <- keras_model( inputs = c(input_1, input_3, input_2), outputs = output ) converter <- Converter$new(model) # Check IntegratedGradient with ignoring last activation data <- lapply(list(c(12,15,3), c(20), c(10)), function(x) torch_randn(c(10,x))) x_ref <- lapply(list(c(12,15,3), c(20), c(10)), function(x) torch_randn(c(1,x))) int_grad <- IntegratedGradient$new(converter, data, x_ref = x_ref, channels_first = FALSE) result <- int_grad$get_result() expect_equal(length(result), 3) expect_equal(dim(result[[1]]), c(10,12,15,3,1)) expect_equal(dim(result[[2]]), c(10,20,1)) expect_equal(dim(result[[3]]), c(10,10,1)) # Check IntegratedGradient without times_input and ignoring last activation data <- lapply(list(c(12,15,3), c(20), c(10)), function(x) torch_randn(c(10,x))) x_ref <- lapply(list(c(12,15,3), c(20), c(10)), function(x) torch_randn(c(1,x))) int_grad <- IntegratedGradient$new(converter, data, x_ref = x_ref, channels_first = FALSE, times_input = FALSE) result <- int_grad$get_result() expect_equal(length(result), 3) expect_equal(dim(result[[1]]), c(10,12,15,3,1)) expect_equal(dim(result[[2]]), c(10,20,1)) expect_equal(dim(result[[3]]), c(10,10,1)) })