test_that("Latent models: RW2 mapping", { skip_on_cran() local_bru_safe_inla() set.seed(123L) data1 <- data.frame( time = rep(c(1, 2, 4, 8, 16), times = 4), obs = rep(c(1, 2, 1, 4, 2), times = 4) + rnorm(20, sd = 0.5) ) cmp1 <- obs ~ time(time, model = "rw2", values = 2^(0:4), constr = FALSE, scale.model = TRUE ) - Intercept fit1 <- bru(cmp1, data = data1, family = "gaussian") expect_equal( fit1$summary.random$time$mean, c(1.631781, 1.895681, 1.025671, 3.959789, 1.841140), tolerance = midtol ) expect_equal( fit1$summary.random$time$sd, c(0.2350089, 0.2438991, 0.2749531, 0.2542052, 0.2473781), tolerance = hitol ) }) test_that("Latent models: RW2 mapping, data is list with different I/O sizes", { skip_on_cran() local_bru_safe_inla() set.seed(123L) data1 <- list( time = c(1, 2, 4, 8, 16), obs = rep(c(1, 2, 1, 4, 2), times = 4) + rnorm(20, sd = 0.5) ) cmp1 <- obs ~ time(time, model = "rw2", values = 2^(0:4), constr = FALSE, scale.model = TRUE ) - Intercept formula <- obs ~ rep(time, times = 4) fit1 <- bru(cmp1, formula = formula, data = data1, family = "gaussian") expect_equal( fit1$summary.random$time$mean, c(1.631781, 1.895681, 1.025671, 3.959789, 1.841140), tolerance = midtol ) expect_equal( fit1$summary.random$time$sd, c(0.2350011, 0.2438999, 0.2749631, 0.2542013, 0.2473662), tolerance = hitol ) })