context("na_seasplit") test_that("All NA vector throws error", { expect_error(na_seasplit(c(NA, NA, NA, NA, NA))) }) test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at end)", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- tsAirgap x[135:144] <- NA expect_equal(round(mean(na_seasplit(x, algorithm = "interpolation")), digits = 1), 276.6) expect_equal(round(mean(na_seasplit(x, algorithm = "locf")), digits = 1), 274.8) expect_equal(round(mean(na_seasplit(x, algorithm = "mean")), digits = 1), 264.0) expect_true(round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima")), digits = 1) > 273 & round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima")), digits = 1) < 277) expect_equal(round(mean(na_seasplit(x, algorithm = "ma")), digits = 1), 275.0) }) test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at start)", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- tsAirgap x[1:5] <- NA expect_equal(round(mean(na_seasplit(x, algorithm = "interpolation")), digits = 1), 280.5) expect_equal(round(mean(na_seasplit(x, algorithm = "locf")), digits = 1), 278.4) expect_equal(round(mean(na_seasplit(x, algorithm = "mean")), digits = 1), 283.4) expect_true(round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima")), digits = 1) > 276 & round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima")), digits = 1) < 280) expect_equal(round(mean(na_seasplit(x, algorithm = "ma")), digits = 1), 281.1) }) test_that("Correct results for all options with the tsAirgap dataset", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- tsAirgap expect_equal(round(mean(na_seasplit(x, algorithm = "interpolation")), digits = 1), 280.3) expect_equal(round(mean(na_seasplit(x, algorithm = "locf")), digits = 1), 278.2) expect_equal(round(mean(na_seasplit(x, algorithm = "mean")), digits = 1), 279.3) expect_true(round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima")), digits = 1) > 277 & round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima")), digits = 1) < 281) expect_equal(round(mean(na_seasplit(x, algorithm = "ma")), digits = 1), 280.3) }) test_that("Imputation works for data.frame", { # Checking if NAs remain in data.frame x <- data.frame(tsAirgap, tsAirgap, tsAirgapComplete) expect_false(anyNA(na_seasplit(x, algorithm = "interpolation"))) expect_false(anyNA(na_seasplit(x, algorithm = "locf"))) expect_false(anyNA(na_seasplit(x, algorithm = "mean"))) expect_false(anyNA(na_seasplit(x, algorithm = "random"))) expect_false(anyNA(na_seasplit(x, algorithm = "kalman"))) expect_false(anyNA(na_seasplit(x, algorithm = "ma"))) }) test_that("Warning for wrong input for algorithm parameter", { expect_error(na_seasplit(tsAirgap, algorithm = "wrong")) }) test_that("Test NA at beginning", { x <- tsAirgap x[1:2] <- NA expect_false(anyNA(na_seasplit(x, algorithm = "interpolation"))) expect_false(anyNA(na_seasplit(x, algorithm = "kalman"))) expect_false(anyNA(na_seasplit(x, algorithm = "locf"))) expect_false(anyNA(na_seasplit(x, algorithm = "ma"))) expect_false(anyNA(na_seasplit(x, algorithm = "mean"))) expect_false(anyNA(na_seasplit(x, algorithm = "random"))) expect_false(anyNA(na_seasplit(x))) }) test_that("Test NA at end", { x <- tsAirgap x[143:144] <- NA expect_false(anyNA(na_seasplit(x, algorithm = "interpolation"))) expect_false(anyNA(na_seasplit(x, algorithm = "kalman"))) expect_false(anyNA(na_seasplit(x, algorithm = "locf"))) expect_false(anyNA(na_seasplit(x, algorithm = "ma"))) expect_false(anyNA(na_seasplit(x, algorithm = "mean"))) expect_false(anyNA(na_seasplit(x, algorithm = "random"))) expect_false(anyNA(na_seasplit(x))) }) test_that("Multiple NAs in a row", { x <- tsAirgap x[40:80] <- NA expect_false(anyNA(na_seasplit(x, algorithm = "interpolation"))) expect_false(anyNA(na_seasplit(x, algorithm = "kalman"))) expect_false(anyNA(na_seasplit(x, algorithm = "locf"))) expect_false(anyNA(na_seasplit(x, algorithm = "ma"))) expect_false(anyNA(na_seasplit(x, algorithm = "mean"))) expect_false(anyNA(na_seasplit(x, algorithm = "random"))) expect_false(anyNA(na_seasplit(x))) }) test_that("Over 50% NAs", { x <- tsAirgap x[30:100] <- NA expect_false(anyNA(na_seasplit(x, algorithm = "interpolation"))) expect_false(anyNA(na_seasplit(x, algorithm = "kalman"))) expect_false(anyNA(na_seasplit(x, algorithm = "locf"))) expect_false(anyNA(na_seasplit(x, algorithm = "ma"))) expect_false(anyNA(na_seasplit(x, algorithm = "mean"))) expect_false(anyNA(na_seasplit(x, algorithm = "random"))) expect_false(anyNA(na_seasplit(x))) }) test_that("No Seasonality in series", { x <- ts(c(3, 5, 6, 7, 8, 4, 5, 6, NA, NA, 5, 7, 4, 2, NA, NA, 5, 7, 8)) expect_false(anyNA(na_seasplit(x, algorithm = "interpolation"))) expect_false(anyNA(na_seasplit(x, algorithm = "kalman"))) expect_false(anyNA(na_seasplit(x, algorithm = "locf"))) expect_false(anyNA(na_seasplit(x, algorithm = "ma"))) expect_false(anyNA(na_seasplit(x, algorithm = "mean"))) expect_false(anyNA(na_seasplit(x, algorithm = "random"))) expect_false(anyNA(na_seasplit(x))) }) test_that("Handling for no NAs", { x <- tsAirgapComplete expect_false(anyNA(na_seasplit(x))) }) test_that("Correct results for all options with the tsAirgap dataset for find_frequency", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- as.vector(tsAirgap) expect_equal(round(mean(na_seasplit(x, algorithm = "interpolation", find_frequency = TRUE)), digits = 1), 280.3) expect_equal(round(mean(na_seasplit(x, algorithm = "interpolation", find_frequency = FALSE)), digits = 1), 280.7) # Check that other frequencys lead to different result if find_frequency is FALSE expect_equal(round(mean(na_seasplit(ts(x, frequency = 2), algorithm = "interpolation", find_frequency = FALSE)), digits = 1), 281.7) # Check that find_frequency overrides frequency for find_frequency = T expect_equal(round(mean(na_seasplit(ts(x, frequency = 2), algorithm = "interpolation", find_frequency = TRUE)), digits = 1), 280.3) expect_equal(round(mean(na_seasplit(x, algorithm = "locf", find_frequency = TRUE)), digits = 1), 278.2) expect_equal(round(mean(na_seasplit(x, algorithm = "locf", find_frequency = FALSE)), digits = 1), 278.8) expect_equal(round(mean(na_seasplit(x, algorithm = "mean", find_frequency = TRUE)), digits = 1), 279.3) expect_equal(round(mean(na_seasplit(x, algorithm = "mean", find_frequency = FALSE)), digits = 1), 279.8) expect_true(round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima", find_frequency = TRUE)), digits = 1) > 277 & round(mean(na_seasplit(x, algorithm = "kalman", model = "auto.arima", find_frequency = TRUE)), digits = 1) < 281) expect_equal(round(mean(na_seasplit(x, algorithm = "ma", find_frequency = TRUE)), digits = 1), 280.3) expect_equal(round(mean(na_seasplit(x, algorithm = "ma", find_frequency = FALSE)), digits = 1), 281.2) })