context("na_ma") test_that("All NA vector throws error", { expect_error(na_ma(c(NA, NA, NA, NA, NA))) }) test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at end)", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- tsAirgap x[135:144] <- NA expect_equal(round(mean(na_ma(x, weighting = "simple", k = 4)), digits = 1), 275.2) expect_equal(round(mean(na_ma(x, weighting = "simple", k = 20)), digits = 1), 276.1) expect_equal(round(mean(na_ma(x, weighting = "linear", k = 4)), digits = 1), 275.0) expect_equal(round(mean(na_ma(x, weighting = "linear", k = 20)), digits = 1), 276.1) expect_equal(round(mean(na_ma(x, weighting = "exponential", k = 4)), digits = 1), 274.6) expect_equal(round(mean(na_ma(x, weighting = "exponential", k = 20)), digits = 1), 274.7) }) test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at start)", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- tsAirgap x[1:5] <- NA expect_equal(round(mean(na_ma(x, weighting = "simple", k = 4)), digits = 1), 282.1) expect_equal(round(mean(na_ma(x, weighting = "simple", k = 20)), digits = 1), 281.1) expect_equal(round(mean(na_ma(x, weighting = "linear", k = 4)), digits = 1), 281.9) expect_equal(round(mean(na_ma(x, weighting = "linear", k = 20)), digits = 1), 281.3) expect_equal(round(mean(na_ma(x, weighting = "exponential", k = 4)), digits = 1), 281.7) expect_equal(round(mean(na_ma(x, weighting = "exponential", k = 20)), digits = 1), 281.6) }) test_that("Correct results for all options with the tsAirgap dataset", { skip_on_cran() # Using mean over resulting vector to check correctness # In order to avoid writing down the complete resulting vector # Using rounded version in order to avoid writing down all decimals x <- tsAirgap expect_equal(round(mean(na_ma(x, weighting = "simple", k = 4)), digits = 1), 281.5) expect_equal(round(mean(na_ma(x, weighting = "simple", k = 20)), digits = 1), 280.7) expect_equal(round(mean(na_ma(x, weighting = "linear", k = 4)), digits = 1), 281.3) expect_equal(round(mean(na_ma(x, weighting = "linear", k = 20)), digits = 1), 280.9) expect_equal(round(mean(na_ma(x, weighting = "exponential", k = 4)), digits = 1), 281.2) expect_equal(round(mean(na_ma(x, weighting = "exponential", k = 20)), digits = 1), 281.1) }) test_that("Imputation works for data.frame", { # Checking if NAs remain in data.frame x <- data.frame(tsAirgap, tsAirgap, tsAirgapComplete) expect_false(anyNA(na_ma(x))) expect_false(anyNA(na_ma(x, weighting = "simple", k = 4))) expect_false(anyNA(na_ma(x, weighting = "simple", k = 20))) expect_false(anyNA(na_ma(x, weighting = "linear", k = 4))) expect_false(anyNA(na_ma(x, weighting = "linear", k = 20))) expect_false(anyNA(na_ma(x, weighting = "exponential", k = 4))) expect_false(anyNA(na_ma(x, weighting = "exponential", k = 20))) }) test_that("Warning for wrong input for k parameter", { expect_error(na_ma(tsAirgap, k = -1)) }) test_that("Warning for wrong input for weighting parameter", { expect_error(na_ma(tsAirgap, weighting = "Wrong")) }) test_that("Test NA at beginning", { x <- tsAirgap x[1:2] <- NA expect_false(anyNA(na_ma(x, k = 4, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "exponential"))) expect_false(anyNA(na_ma(x))) }) test_that("Test NA at end", { x <- tsAirgap x[143:144] <- NA expect_false(anyNA(na_ma(x, k = 4, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "exponential"))) expect_false(anyNA(na_ma(x))) }) test_that("Multiple NAs in a row", { x <- tsAirgap x[40:80] <- NA expect_false(anyNA(na_ma(x, k = 4, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "exponential"))) expect_false(anyNA(na_ma(x))) }) test_that("Over 90% NAs", { x <- tsAirgap x[10:140] <- NA expect_false(anyNA(na_ma(x, k = 4, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "simple"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "linear"))) expect_false(anyNA(na_ma(x, k = 4, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 1, weighting = "exponential"))) expect_false(anyNA(na_ma(x, k = 20, weighting = "exponential"))) expect_false(anyNA(na_ma(x))) })