suppressPackageStartupMessages(library(workflows)) suppressPackageStartupMessages(library(tune)) suppressPackageStartupMessages(library(dplyr)) suppressPackageStartupMessages(library(purrr)) suppressPackageStartupMessages(library(parsnip)) # imported by tune suppressPackageStartupMessages(library(yardstick)) # imported by tune # ------------------------------------------------------------------------------ # regression examples CO2_ex <- CO2 |> dplyr::select(-Plant, -Treatment) co2_rec <- recipes::recipe(uptake ~ ., data = CO2_ex) |> recipes::step_dummy(recipes::all_factor_predictors()) reg_f_wflow <- workflows::workflow(uptake ~ ., parsnip::linear_reg()) reg_r_wflow <- workflows::workflow(co2_rec, parsnip::linear_reg()) reg_v_wflow <- workflows::workflow() |> workflows::add_model(parsnip::linear_reg()) |> workflows::add_variables(outcomes = uptake, predictors = c(everything())) reg_1d_wflow <- workflows::workflow(uptake ~ conc, parsnip::linear_reg()) reg_f_fit <- workflows:::fit.workflow(reg_f_wflow, CO2_ex) reg_r_fit <- workflows:::fit.workflow(reg_r_wflow, CO2_ex) reg_v_fit <- workflows:::fit.workflow(reg_v_wflow, CO2_ex) reg_1d_fit <- workflows:::fit.workflow(reg_1d_wflow, CO2_ex) reg_mtr <- yardstick::metric_set(yardstick::rsq, yardstick::mae) # ------------------------------------------------------------------------------ # classification examples cls_f_wflow <- workflows::workflow(Class ~ ., parsnip::logistic_reg()) cls_v_wflow <- workflows::workflow() |> workflows::add_model(parsnip::logistic_reg()) |> workflows::add_variables(outcomes = Class, predictors = c(everything())) cls_1d_wflow <- workflows::workflow(Class ~ tau, parsnip::logistic_reg()) if (rlang::is_installed("modeldata")) { suppressPackageStartupMessages(library(modeldata)) ad_data_small <- modeldata::ad_data |> dplyr::select(Class, tau, p_tau, VEGF, MMP10, Genotype, male) ad_rec <- recipes::recipe(Class ~ ., data = ad_data_small) |> recipes::step_pca(tau, p_tau, VEGF, MMP10, num_comp = 2) |> recipes::step_dummy(recipes::all_factor_predictors()) cls_r_wflow <- workflows::workflow(ad_rec, parsnip::logistic_reg()) cls_f_fit <- workflows:::fit.workflow(cls_f_wflow, ad_data_small) cls_r_fit <- workflows:::fit.workflow(cls_r_wflow, ad_data_small) cls_v_fit <- workflows:::fit.workflow(cls_v_wflow, ad_data_small) cls_1d_fit <- workflows:::fit.workflow(cls_1d_wflow, ad_data_small) } cls_mtr <- yardstick::metric_set(yardstick::brier_class, yardstick::kap, yardstick::mcc) # ------------------------------------------------------------------------------ # survival examples if (rlang::is_installed("censored")) { suppressPackageStartupMessages(library(censored)) time_to_million_small <- censored::time_to_million |> dplyr::select(time, event, year, runtime) |> dplyr::mutate(event_time = survival::Surv(time, event), .keep = "unused") |> dplyr::slice(1:150) srv_wflow <- workflows::workflow(event_time ~ ., parsnip::survival_reg()) srv_fit <- workflows:::fit.workflow(srv_wflow, time_to_million_small) srv_times <- (1:4) / 4 } srv_mtr <- yardstick::metric_set(yardstick::concordance_survival, yardstick::roc_auc_survival) # ------------------------------------------------------------------------------ # fmt: skip ex_seed <- list( seed = list( c(10407L, -216878323L, -959064183L, 1254362331L, -777164474L, -83959242L, -852110966L)), id = 548676L )