test_that("D-score replicated", { data("raw_data") # import data iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant", block_id = "blockcode", mapA_practice = "practice.iat.Milkbad", mapA_test = "test.iat.Milkbad", mapB_practice = "practice.iat.Milkgood", mapB_test = "test.iat.Milkgood", latency_id = "latency", accuracy_id = "correct", trial_id = "trialcode", trial_eliminate = c("reminder", "reminder1")) data <- iat_cleandata[[1]] # compute all algorithms from the data frame label_d <- paste0("d", 1:6) scores <- list() for(i in 1:length(label_d)) { scores[[i]] <- compute_iat(data, Dscore = label_d[i]) } dscores <- data.frame(participant = scores[[1]]$participant) for (i in 1:length(scores)){ name_col <- gsub("d", "dscore_d", label_d) dscores[, name_col[i]] <- scores[[i]][, name_col[[i]]] } # upload the iat dscore compute_iat on 07/09/2020 data("iatdscores") long_old <- reshape(iatdscores, idvar = "participant", v.names = "old_scores", times = colnames(iatdscores)[-1], timevar = "labels", varying = list(names(iatdscores)[-1]), direction = "long") new_long <- reshape(dscores, idvar = "participant", v.names = "new_scores", times = colnames(dscores)[-1], timevar = "labels", varying = list(names(dscores)[-1]), direction = "long") comparison <- merge(long_old, new_long, by = c("participant", "labels")) # check that all the columns of the two dataset expect_true(all(comparison$old_scores == comparison$new_scores) == TRUE) })