test_that("cliques() works", { withr::local_seed(42) check.clique <- function(graph, vids) { s <- induced_subgraph(graph, vids) ecount(s) == vcount(s) * (vcount(s) - 1) / 2 } g <- sample_gnp(100, 0.3) expect_equal(clique_num(g), 6) cl <- sapply(cliques(g, min = 6), check.clique, graph = g) lcl <- sapply(largest_cliques(g), check.clique, graph = g) expect_equal(cl, lcl) expect_equal(cl, rep(TRUE, 17)) expect_equal(lcl, rep(TRUE, 17)) ## To have a bit less maximal cliques, about 100-200 usually g <- sample_gnp(100, 0.03) expect_true(all(sapply(max_cliques(g), check.clique, graph = g))) }) test_that("clique_size_counts() works", { g <- make_full_graph(5) %du% make_full_graph(3) expect_equal(clique_size_counts(g), c(8, 13, 11, 5, 1)) expect_equal(clique_size_counts(g, min = 3), c(0, 0, 11, 5, 1)) expect_equal(clique_size_counts(g, max = 4), c(8, 13, 11, 5)) expect_equal(clique_size_counts(g, min = 2, max = 4), c(0, 13, 11, 5)) expect_equal(clique_size_counts(g, maximal = TRUE), c(0, 0, 1, 0, 1)) expect_equal(clique_size_counts(g, min = 3, maximal = TRUE), c(0, 0, 1, 0, 1)) expect_equal(clique_size_counts(g, max = 4, maximal = TRUE), c(0, 0, 1)) expect_equal(clique_size_counts(g, min = 2, max = 4, maximal = TRUE), c(0, 0, 1)) }) test_that("weighted_cliques works", { g <- make_graph(~ A - B - C - A - D - E - F - G - H - D - F - H - E - G - D) weights <- c(5, 5, 5, 3, 3, 3, 3, 2) check.clique <- function(graph, vids, min_weight) { s <- induced_subgraph(graph, vids) ecount(s) == vcount(s) * (vcount(s) - 1) / 2 && sum(V(s)$weight) >= min_weight } expect_equal( lapply(largest_weighted_cliques(g, vertex.weights = weights), as.numeric), list(c(1, 2, 3)) ) V(g)$weight <- weights cl <- sapply(weighted_cliques(g, min.weight = 9), check.clique, graph = g, min_weight = 9) expect_equal(cl, rep(TRUE, 14)) g <- make_graph("zachary") weights <- rep(1, vcount(g)) weights[c(1, 2, 3, 4, 14)] <- 3 expect_equal(weighted_clique_num(g, vertex.weights = weights), 15) V(g)$weight <- weights * 2 expect_equal(weighted_clique_num(g), 30) }) test_that("max_cliques() work", { withr::local_seed(42) G <- sample_gnm(1000, 1000) cli <- make_full_graph(10) for (i in 1:10) { G <- permute(G, sample(vcount(G))) G <- G %u% cli } G <- simplify(G) mysort <- function(x) { xl <- sapply(x, length) x <- lapply(x, sort) xc <- sapply(x, paste, collapse = "-") x[order(xl, xc)] } bk4 <- function(graph, min = 0, max = Inf) { Gamma <- function(v) { neighbors(graph, v) } bkpivot <- function(PX, R) { P <- if (PX$PE >= PX$PS) { PX$PX[PX$PS:PX$PE] } else { numeric() } X <- if (PX$XE >= PX$XS) { PX$PX[PX$XS:PX$XE] } else { numeric() } if (length(P) == 0 && length(X) == 0) { if (length(R) >= min && length(R) <= max) { list(R) } else { list() } } else if (length(P) != 0) { psize <- sapply(c(P, X), function(u) { length(intersect(P, Gamma(u))) }) u <- c(P, X)[which.max(psize)] pres <- list() for (v in setdiff(P, Gamma(u))) { p0 <- if (PX$PS > 1) { PX$PX[1:(PX$PS - 1)] } else { numeric() } p1 <- setdiff(P, Gamma(v)) p2 <- intersect(P, Gamma(v)) x1 <- intersect(X, Gamma(v)) x2 <- setdiff(X, Gamma(v)) x0 <- if (PX$XE < length(PX$PX)) { PX$PX[(PX$XE + 1):length(PX$PX)] } else { numeric() } newPX <- list( PX = c(p0, p1, p2, x1, x2, x0), PS = length(p0) + length(p1) + 1, PE = length(p0) + length(p1) + length(p2), XS = length(p0) + length(p1) + length(p2) + 1, XE = length(p0) + length(p1) + length(p2) + length(x1) ) pres <- c(pres, bkpivot(newPX, c(R, v))) vpos <- which(PX$PX == v) tmp <- PX$PX[PX$PE] PX$PX[PX$PE] <- v PX$PX[vpos] <- tmp PX$PE <- PX$PE - 1 PX$XS <- PX$XS - 1 P <- if (PX$PE >= PX$PS) { PX$PX[PX$PS:PX$PE] } else { numeric() } X <- if (PX$XE >= PX$XS) { PX$PX[PX$XS:PX$XE] } else { numeric() } if (any(duplicated(PX$PX))) { stop("foo2") } } pres } } res <- list() cord <- order(coreness(graph)) for (v in seq_along(cord)) { if (v != length(cord)) { P <- intersect(Gamma(cord[v]), cord[(v + 1):length(cord)]) } else { P <- numeric() } if (v != 1) { X <- intersect(Gamma(cord[v]), cord[1:(v - 1)]) } else { X <- numeric() } PX <- list( PX = c(P, X), PS = 1, PE = length(P), XS = length(P) + 1, XE = length(P) + length(X) ) res <- c(res, bkpivot(PX, cord[v])) } lapply(res, as.integer) } cl1 <- mysort(bk4(G, min = 3)) cl2 <- mysort(unvs(max_cliques(G, min = 3))) expect_identical(cl1, cl2) }) test_that("max_cliques() work for subsets", { withr::local_seed(42) G <- sample_gnp(100, .5) mysort <- function(x) { xl <- sapply(x, length) x <- lapply(x, sort) xc <- sapply(x, paste, collapse = "-") x[order(xl, xc)] } cl1 <- mysort(unvs(max_cliques(G, min = 8))) c1 <- unvs(max_cliques(G, min = 8, subset = 1:13)) c2 <- unvs(max_cliques(G, min = 8, subset = 14:100)) cl2 <- mysort(c(c1, c2)) expect_identical(cl1, cl2) }) test_that("count_max_cliques works", { withr::local_seed(42) G <- sample_gnp(100, .5) cl1 <- count_max_cliques(G, min = 8) c1 <- count_max_cliques(G, min = 8, subset = 1:13) c2 <- count_max_cliques(G, min = 8, subset = 14:100) cl2 <- c1 + c2 expect_identical(cl1, cl2) }) test_that("ivs() works", { g <- sample_gnp(50, 0.8) ivs <- ivs(g, min = ivs_size(g)) ec <- sapply(seq_along(ivs), function(x) { ecount(induced_subgraph(g, ivs[[x]])) }) expect_equal(unique(ec), 0) }) test_that("ivs() works, cliques of complement", { # 2385298846 https://github.com/igraph/rigraph/pull/1541#issuecomment-2385298846 # that the independent vertex sets of G are # the same as the cliques of the complement of G (and vice versa) g <- sample_gnp(50, 0.8) ivs <- ivs(g, min = ivs_size(g)) %>% lapply(as.numeric) complement <- complementer(g) cliques <- cliques(complement, min = ivs_size(g)) %>% lapply(as.numeric) expect_equal(length(ivs), length(cliques)) ivs_with_equivalent <- map_lgl( ivs, function(element, cliques) any(map_lgl(cliques, function(x) identical(x, element))), cliques = cliques ) expect_equal(sum(ivs_with_equivalent), length(ivs)) cliques_with_equivalent <- map_lgl( cliques, function(element, ivs) any(map_lgl(ivs, function(x) identical(x, element))), ivs = ivs ) expect_equal(sum(cliques_with_equivalent), length(cliques)) }) test_that("largest_cliques() works", { adj <- matrix(1, nrow = 11, ncol = 11) - diag(11) g <- graph_from_adjacency_matrix(adj) expect_warning( lc <- largest_cliques(g), "Edge directions are ignored for maximal clique calculation" ) expect_equal(lapply(unvs(lc), sort), list(1:11)) }) test_that("largest_ivs() works", { g <- sample_gnp(50, 0.8) livs <- largest_ivs(g) expect_equal( unique(sapply(livs, length)), ivs_size(g) ) ec <- sapply(seq_along(livs), function(x) { ecount(induced_subgraph(g, livs[[x]])) }) expect_equal(unique(ec), 0) ## TODO: check that they are largest })