std <- function(x) { x <- zapsmall(x) apply(x, 2, function(col) { if (any(col < 0) && col[which(col != 0)[1]] < 0) { -col } else { col } }) } mag_order <- function(x) { order(abs(x), sign(x), decreasing = TRUE) } mag_sort <- function(x) { x[mag_order(x)] } test_that("Undirected, unweighted case works", { set.seed(42) g <- random.graph.game(10, 15, type = "gnm", directed = FALSE) no <- 7 A <- g[] A <- A + 1 / 2 * as(Matrix::Matrix(diag(degree(g)), doDiag = FALSE), "generalMatrix") ss <- eigen(A) U <- std(ss$vectors) X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) au_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = TRUE ) as_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_la$D, equals(ss$values[1:no])) expect_that(au_la$D, equals(ss$values[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) expect_that(std(au_la$X), equals(X[, 1:no])) au_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = TRUE ) as_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(au_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(ss$values)][, 1:no]))) expect_that(std(au_lm$X), equals(X[, mag_order(ss$values)][, 1:no])) au_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = TRUE ) as_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_sa$D, equals(ss$values[vcount(g) - 1:no + 1])) expect_that(au_sa$D, equals(ss$values[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) expect_that(std(au_sa$X), equals(X[, vcount(g) - 1:no + 1])) }) test_that("Undirected, weighted case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) E(g)$weight <- sample(1:5, ecount(g), replace = TRUE) no <- 3 A <- g[] A <- A + 1 / 2 * as(Matrix::Matrix(diag(degree(g)), doDiag = FALSE), "generalMatrix") ss <- eigen(A) U <- std(ss$vectors) X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) au_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = TRUE ) as_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_la$D, equals(ss$values[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) expect_that(au_la$D, equals(ss$values[1:no])) expect_that(std(au_la$X), equals(X[, 1:no])) au_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = TRUE ) as_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(au_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(ss$values)][, 1:no]))) expect_that(std(au_lm$X), equals(X[, mag_order(ss$values)][, 1:no])) au_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = TRUE ) as_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = FALSE ) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) expect_that(std(au_sa$X), equals(X[, vcount(g) - 1:no + 1])) }) test_that("Directed, unweighted case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = TRUE) no <- 3 A <- g[] A <- A + 1 / 2 * as(Matrix::Matrix(diag(degree(g)), doDiag = FALSE), "generalMatrix") ss <- svd(A) U <- std(ss$u) V <- std(ss$v) X <- std(ss$u %*% sqrt(diag(ss$d))) Y <- std(ss$v %*% sqrt(diag(ss$d))) au_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = TRUE ) as_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_la$D, equals(ss$d[1:no])) expect_that(au_la$D, equals(ss$d[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) expect_that(std(as_la$Y), equals(std(V[, 1:no]))) expect_that(std(au_la$X), equals(X[, 1:no])) expect_that(std(au_la$Y), equals(Y[, 1:no])) au_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = TRUE ) as_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_lm$D, equals(ss$d[1:no])) expect_that(au_lm$D, equals(ss$d[1:no])) expect_that(std(as_lm$X), equals(std(U[, 1:no]))) expect_that(std(as_lm$Y), equals(std(V[, 1:no]))) expect_that(std(au_lm$X), equals(X[, 1:no])) expect_that(std(au_lm$Y), equals(Y[, 1:no])) au_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = TRUE ) as_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = FALSE ) expect_that(as_sa$D, equals(ss$d[vcount(g) - 1:no + 1])) expect_that(au_sa$D, equals(ss$d[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) expect_that(std(as_sa$Y), equals(std(V[, vcount(g) - 1:no + 1]))) expect_that(std(au_sa$X), equals(X[, vcount(g) - 1:no + 1])) expect_that(std(au_sa$Y), equals(Y[, vcount(g) - 1:no + 1])) }) test_that("Directed, weighted case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = TRUE) E(g)$weight <- sample(1:5, ecount(g), replace = TRUE) no <- 3 A <- g[] A <- A + 1 / 2 * as(Matrix::Matrix(diag(degree(g)), doDiag = FALSE), "generalMatrix") ss <- svd(A) U <- std(ss$u) V <- std(ss$v) X <- std(ss$u %*% sqrt(diag(ss$d))) Y <- std(ss$v %*% sqrt(diag(ss$d))) au_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = TRUE ) as_la <- embed_adjacency_matrix(g, no = no, which = "la", cvec = degree(g) / 2, scaled = FALSE ) expect_that(std(as_la$X), equals(std(U[, 1:no]))) expect_that(std(as_la$Y), equals(std(V[, 1:no]))) expect_that(std(au_la$X), equals(X[, 1:no])) expect_that(std(au_la$Y), equals(Y[, 1:no])) au_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = TRUE ) as_lm <- embed_adjacency_matrix(g, no = no, which = "lm", cvec = degree(g) / 2, scaled = FALSE ) expect_that(std(as_lm$X), equals(std(U[, 1:no]))) expect_that(std(as_lm$Y), equals(std(V[, 1:no]))) expect_that(std(au_lm$X), equals(X[, 1:no])) expect_that(std(au_lm$Y), equals(Y[, 1:no])) au_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = TRUE ) as_sa <- embed_adjacency_matrix(g, no = no, which = "sa", cvec = degree(g) / 2, scaled = FALSE ) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) expect_that(std(as_sa$Y), equals(std(V[, vcount(g) - 1:no + 1]))) expect_that(std(au_sa$X), equals(X[, vcount(g) - 1:no + 1])) expect_that(std(au_sa$Y), equals(Y[, vcount(g) - 1:no + 1])) }) test_that("Issue #50 is resolved", { set.seed(12345) g <- erdos.renyi.game(15, .4) w <- -log(runif(ecount(g))) X1 <- embed_adjacency_matrix(g, 2, weights = w) E(g)$weight <- w X2 <- embed_adjacency_matrix(g, 2) expect_that(X1$D, equals(X2$D)) }) test_that("Issue #51 is resolved", { set.seed(12345) pref.matrix <- diag(0.2, 2) + 0.2 block.sizes <- c(800, 800) n <- sum(block.sizes) g <- sample_sbm(n, pref.matrix, block.sizes, directed = TRUE) for (i in 1:25) { ase <- embed_adjacency_matrix(g, 2) expect_that(mean(ase$X %*% t(ase$Y)), equals(0.299981018354173)) } })