std <- function(x) { x <- zapsmall(x) apply(x, 2, function(col) { if (any(col < 0) && col[which(col != 0)[1]] < 0) { -col } else { col } }) } mag_order <- function(x) { order(abs(x), sign(x), decreasing = TRUE) } mag_sort <- function(x) { x[mag_order(x)] } test_that("Undirected, unweighted, D-A case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) no <- 3 A <- as(Matrix::Matrix(diag(degree(g)), doDiag = FALSE), "generalMatrix") - g[] ss <- eigen(A) D <- ss$values U <- ss$vectors X <- std(ss$vectors %*% sqrt(diag(ss$values))) Y <- std(ss$vectors %*% sqrt(diag(ss$values))) ## LA au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "D-A", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "D-A", scaled = FALSE ) expect_that(au_la$D, equals(D[1:no])) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) ## LM au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "D-A", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "D-A", scaled = FALSE ) expect_that(au_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(au_lm$X), equals(std(X[, mag_order(D)][, 1:no]))) expect_that(as_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(D)][, 1:no]))) ## SA au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "D-A", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "D-A", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) }) test_that("Undirected, unweighted, DAD case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) no <- 3 D12 <- diag(1 / sqrt(degree(g))) A <- D12 %*% g[] %*% D12 ss <- eigen(A) D <- ss$values U <- ss$vectors X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) ## LA au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "DAD", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "DAD", scaled = FALSE ) expect_that(au_la$D, equals(abs(D[1:no]))) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) ## LM au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "DAD", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "DAD", scaled = FALSE ) expect_that(au_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(au_lm$X), equals(std(X[, mag_order(D)][, 1:no]))) expect_that(as_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(D)][, 1:no]))) ## SA au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "DAD", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "DAD", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) }) test_that("Undirected, unweighted, I-DAD case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) no <- 3 D12 <- diag(1 / sqrt(degree(g))) A <- diag(vcount(g)) - D12 %*% g[] %*% D12 ss <- eigen(A) D <- ss$values U <- ss$vectors X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) ## LA au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "I-DAD", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "I-DAD", scaled = FALSE ) expect_that(au_la$D, equals(abs(D[1:no]))) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) ## LM au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "I-DAD", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "I-DAD", scaled = FALSE ) expect_that(au_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(au_lm$X), equals(std(X[, mag_order(D)][, 1:no]))) expect_that(as_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(D)][, 1:no]))) ## SA au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "I-DAD", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "I-DAD", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) }) test_that("Undirected, weighted, D-A case works", { set.seed(42 * 42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) E(g)$weight <- sample(1:5, ecount(g), replace = TRUE) no <- 3 A <- as(Matrix::Matrix(diag(strength(g)), doDiag = FALSE), "generalMatrix") - g[] ss <- eigen(A) D <- ss$values U <- ss$vectors X <- std(ss$vectors %*% sqrt(diag(abs(D)))) Y <- std(ss$vectors %*% sqrt(diag(abs(D)))) ## LA au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "D-A", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "D-A", scaled = FALSE ) expect_that(au_la$D, equals(abs(D[1:no]))) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) ## LM au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "D-A", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "D-A", scaled = FALSE ) expect_that(au_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(au_lm$X), equals(std(X[, mag_order(D)][, 1:no]))) expect_that(as_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(D)][, 1:no]))) ## SA au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "D-A", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "D-A", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(X[, vcount(g) - 1:no + 1], tolerance = .Machine$double.eps^0.25 )) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) }) test_that("Undirected, unweighted, DAD case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) no <- 3 D12 <- diag(1 / sqrt(degree(g))) A <- D12 %*% g[] %*% D12 ss <- eigen(A) D <- ss$values U <- ss$vectors X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) ## LA au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "DAD", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "DAD", scaled = FALSE ) expect_that(au_la$D, equals(abs(D[1:no]))) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) ## LM au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "DAD", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "DAD", scaled = FALSE ) expect_that(au_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(au_lm$X), equals(std(X[, mag_order(D)][, 1:no]))) expect_that(as_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(D)][, 1:no]))) ## SA au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "DAD", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "DAD", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) }) test_that("Undirected, unweighted, I-DAD case works", { set.seed(42) g <- random.graph.game(10, 20, type = "gnm", directed = FALSE) no <- 3 D12 <- diag(1 / sqrt(degree(g))) A <- diag(vcount(g)) - D12 %*% g[] %*% D12 ss <- eigen(A) D <- ss$values U <- ss$vectors X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) ## LA au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "I-DAD", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "I-DAD", scaled = FALSE ) expect_that(au_la$D, equals(abs(D[1:no]))) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) ## LM au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "I-DAD", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "I-DAD", scaled = FALSE ) expect_that(au_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(au_lm$X), equals(std(X[, mag_order(D)][, 1:no]))) expect_that(as_lm$D, equals(mag_sort(D)[1:no])) expect_that(std(as_lm$X), equals(std(U[, mag_order(D)][, 1:no]))) ## SA au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "I-DAD", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "I-DAD", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) }) test_that("Directed, unweighted, OAP case works", { set.seed(42 * 42) g <- random.graph.game(10, 30, type = "gnm", directed = TRUE) no <- 3 O12 <- diag(1 / sqrt(degree(g, mode = "out"))) P12 <- diag(1 / sqrt(degree(g, mode = "in"))) A <- O12 %*% g[] %*% P12 ss <- svd(A) D <- ss$d U <- ss$u V <- ss$v X <- std(ss$u %*% sqrt(diag(ss$d))) Y <- std(ss$v %*% sqrt(diag(ss$d))) au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "OAP", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "OAP", scaled = FALSE ) expect_that(au_la$D, equals(D[1:no])) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(std(au_la$Y), equals(std(Y[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) expect_that(std(as_la$Y), equals(std(V[, 1:no]))) au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "OAP", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "OAP", scaled = FALSE ) expect_that(au_lm$D, equals(D[1:no])) expect_that(std(au_lm$X), equals(std(X[, 1:no]))) expect_that(std(au_lm$Y), equals(std(Y[, 1:no]))) expect_that(as_lm$D, equals(D[1:no])) expect_that(std(as_lm$X), equals(std(U[, 1:no]))) expect_that(std(as_lm$Y), equals(std(V[, 1:no]))) au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "OAP", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "OAP", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(std(au_sa$Y), equals(std(Y[, vcount(g) - 1:no + 1]), tolerance = sqrt(sqrt(.Machine$double.eps)) )) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) expect_that(std(as_sa$Y), equals(std(V[, vcount(g) - 1:no + 1]))) }) test_that("Directed, weighted case works", { set.seed(42 * 42) g <- random.graph.game(10, 30, type = "gnm", directed = TRUE) E(g)$weight <- sample(1:5, ecount(g), replace = TRUE) no <- 3 O12 <- diag(1 / sqrt(strength(g, mode = "out"))) P12 <- diag(1 / sqrt(strength(g, mode = "in"))) A <- O12 %*% g[] %*% P12 ss <- svd(A) D <- ss$d U <- ss$u V <- ss$v X <- std(ss$u %*% sqrt(diag(ss$d))) Y <- std(ss$v %*% sqrt(diag(ss$d))) au_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "OAP", scaled = TRUE ) as_la <- embed_laplacian_matrix(g, no = no, which = "la", type = "OAP", scaled = FALSE ) expect_that(au_la$D, equals(D[1:no])) expect_that(std(au_la$X), equals(std(X[, 1:no]))) expect_that(std(au_la$Y), equals(std(Y[, 1:no]))) expect_that(as_la$D, equals(D[1:no])) expect_that(std(as_la$X), equals(std(U[, 1:no]))) expect_that(std(as_la$Y), equals(std(V[, 1:no]))) au_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "OAP", scaled = TRUE ) as_lm <- embed_laplacian_matrix(g, no = no, which = "lm", type = "OAP", scaled = FALSE ) expect_that(au_lm$D, equals(D[1:no])) expect_that(std(au_lm$X), equals(std(X[, 1:no]))) expect_that(std(au_lm$Y), equals(std(Y[, 1:no]))) expect_that(as_lm$D, equals(D[1:no])) expect_that(std(as_lm$X), equals(std(U[, 1:no]))) expect_that(std(as_lm$Y), equals(std(V[, 1:no]))) au_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "OAP", scaled = TRUE ) as_sa <- embed_laplacian_matrix(g, no = no, which = "sa", type = "OAP", scaled = FALSE ) expect_that(au_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(au_sa$X), equals(std(X[, vcount(g) - 1:no + 1]))) expect_that(std(au_sa$Y), equals(std(Y[, vcount(g) - 1:no + 1]), tolerance = sqrt(sqrt(.Machine$double.eps)) )) expect_that(as_sa$D, equals(D[vcount(g) - 1:no + 1])) expect_that(std(as_sa$X), equals(std(U[, vcount(g) - 1:no + 1]))) expect_that(std(as_sa$Y), equals(std(V[, vcount(g) - 1:no + 1]))) })