#Sample graphs from edge probability matrix and correlation matrix set.seed(123) n <- 10 p_mat <- matrix(runif(n^2),n) c_mat <- matrix(runif(n^2),n) g <- sample_correlated_ieg_pair(n, p_mat, c_mat, directed = TRUE,loops = TRUE, permutation = 1:n) test_that("number of vertices", { expect_equal(igraph::vcount(g$graph1),10) expect_equal(igraph::vcount(g$graph2),10) }) test_that("number of edges", { expect_equal(igraph::ecount(g$graph1),56) expect_equal(igraph::ecount(g$graph2),56) }) test_that("degree of vertex in each graph", { expect_equal(igraph::degree(g$graph1),c(10,10,13,13,11,9,13,13,12,8)) expect_equal(igraph::degree(g$graph2),c(11,10,10,11,9,13,13,13,11,11)) }) # Sample undirected ieg pairs set.seed(123) n <- 10 p_mat <- matrix(runif(n^2),n) c_mat <- matrix(runif(n^2),n) g <- sample_correlated_ieg_pair(n, p_mat, c_mat, directed = FALSE,loops = TRUE, permutation = 1:n) test_that("sample undirected ieg pairs", { expect_equal(igraph::vcount(g$graph1),10) expect_equal(igraph::vcount(g$graph2),10) }) # Sample random dot product graphs n <- 10 xdim <- 3 scale <- 8 X <- matrix(rgamma(n*(xdim+1),scale,1),n,xdim+1) X <- X/rowSums(X) X <- X[,1:xdim] g <- sample_correlated_rdpg_pair(X,corr=0.5) test_that("sample undirected rdpg pairs", { expect_equal(igraph::vcount(g$graph1),10) expect_equal(igraph::vcount(g$graph2),10) }) g <- sample_correlated_rdpg_pair(X,corr=c_mat) test_that("sample undirected rdpg pairs w. corr mat", { expect_equal(igraph::vcount(g$graph1),10) expect_equal(igraph::vcount(g$graph2),10) })