# sample pair of graphs w. 10 vertices set.seed(123) cgnp_pair <- sample_correlated_gnp_pair(n=10, corr=0.8, p=0.5) A <- cgnp_pair$graph1 B <- cgnp_pair$graph2 # ex_df <- data.frame(corr_A = c(1:10), # corr_B = c(4, 2, 9, 8, 5, 7, 10, 6, 3, 1)) test_that("warning from gm convex", { expect_warning( actual <<- gm(A, B, method = "convex"), "Frank-Wolfe iterations reach the maximum iteration, convergence may not occur.*" ) } ) # test_that("correct matching result", # { # expect_snapshot_value(actual@corr, style = "serialize") # }) test_that("matching correspondence between graph1 and graph2", { expect_equal(dim(actual), c(igraph::vcount(A), igraph::vcount(B))) } ) test_that("doubly stochastic", { expect_lt(sum(abs(rowSums(actual$soft) - 1)), 10e-6) expect_lt(sum(abs(colSums(actual$soft) - 1)), 10e-6) }) test_that("number of seeds", { expect_equal(sum(actual$seeds), 0) }) # test output error when given start = "convex" test_that("doubly stochastic", { expect_error( gm(A, B, method = "convex",start = "convex"), "Cannot start convex with convex. Try \"bari\" or another option." ) })