# R CMD BATCH --no-timing --no-restore --no-save caco2_test.R caco2_test.Rout # Get rid of anything in the workspace: rm(list=ls()) library(httk) p <- parameterize_pbtk(chem.cas="80-05-7") print(p[["MW"]]) print(p[["BW"]]) print(p[["Fabsgut"]]) # calculate what initial dose of 1 mg/kg should be in uM in the gut: initial.dose <- signif(1/1e3*1e6/p[["MW"]]*p[["BW"]]*p[["Fabsgut"]], 4) # This should be the same as what solve_pbtk givesus: initial.dose == solve_pbtk(chem.cas="80-05-7")[1,"Agutlumen"] # By default we now include calculation of Fabs and Fgut (always had Fhep): calc_analytic_css(chem.name="bisphenol a", model="pbtk") # Therefore if we set Fabs = Fgut = 1 with keetit100=TRUE, we should get a # higher predicted plasma steady-state concentration: calc_analytic_css(chem.name="bisphenol a", model="pbtk", Caco2.options=list(keepit100=TRUE)) # By default we now include calculation of Fabs and Fgut (we explicitly model # first-pass hepatic metabolism in the model "pbtk") head(solve_pbtk(chem.cas="80-05-7")) # Therefore if we set Fabs = Fgut = 1 with keetit100=TRUE, we should get a # higher tissue concentrations: head(solve_pbtk(chem.cas="80-05-7", Caco2.options=list(keepit100=TRUE))) # Reduce the number of samples used by Monte Carlo to decrease runtime for # CRAN checks (never use predictions with only ten draws): NSAMP <- 10 set.seed(1234) # Let's make sure that the monte carlo Css is also lower when some chemical # is not absorbed: Css1.caco <- calc_mc_css(chem.cas="15972-60-8", model="3compartment", samples=NSAMP) # The monte carlo Css should be higher with keepit100-TRUE set.seed(1234) Css1.100 <- calc_mc_css(chem.cas="15972-60-8", model="3compartment", samples=NSAMP, Caco2.options=list(keepit100=TRUE)) Css1.caco < Css1.100 set.seed(1234) Css2.caco <- calc_mc_css(dtxsid="DTXSID6034392", samples=NSAMP, which.quantile=0.5) set.seed(1234) Css2.100 <- calc_mc_css(dtxsid="DTXSID6034392", samples=NSAMP, Caco2.options = list(keepit100=TRUE), which.quantile=0.5) Css2.caco < Css2.100 quit("no")